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Abstract

The full ADHM-Nahm formalism is employed to find exact higher charge caloron solutions
non-trivial holonomy, extended beyond the axially symmetric solutions found earlier. Partic
interesting is the case where the constituent monopoles, that make up these solutions, are not n
essarily well-separated. This is worked out in detail for charge 2. We resolve the structure
extended core, which was previously localized only through the singularity structure of the
mode density in the far field limit. We also show that this singularity structure agrees exactl
the Abelian charge distribution as seen through the Abelian component of the gauge field
by-product zero-mode densities for charge 2 magnetic monopoles are found.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Calorons are instantons at finite temperature. For a long time the influence of a
ground Polyakov loop on the properties of these topological excitations has been neg
Solutions were constructed long ago[1] and were studied in detailin the semi-classical ap
proximation[2]. In all these studies the Polyakov loop at spatial infinity (also called
holonomy) was trivial, i.e., an element of the center of the gauge group. That the infl
of the background Polyakov loop on the topological excitations can be dramatic is p
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ularly clear in the confined phase, where on average its trace vanishes. Caloron so
in such backgrounds were constructed only relatively recently[3,4] and can be seen a
composed of massive monopole constituents with their magnetic charges adding to zero

It was observed that the one-loop correction to the action for configurations with a
trivial asymptotic value of the Polyakov loop gives rise to an infinite action barrier, w
were therefore considered irrelevant[2]. However, the infinity simply arises due to th
integration over the finite energydensity induced by the perturbative fluctuations in t
background of a non-trivial Polyakov loop[5]. The proper setting would therefore rath
be to calculate the non-perturbative contribution of calorons (with a given asymptotic
of the Polyakov loop) to this energy density, as was first successfully implemented in s
persymmetric theories[6], where the perturbative contribution vanishes. It has a minim
where the trace of the Polyakov loop vanishes, i.e., at maximal non-trivial holonomy

In a recent study at high temperatures, where one presumably can trust the se
classical approximation, thenon-perturbative contribution of these monopole constituen
(also called dyons) was computed[7]. When added to the perturbative contribution[5] with
its minima at center elements, a local minimum develops where the trace of the Po
loop vanishes, deepening further for decreasing temperature. This gives support for
in which the center symmetry, broken in the high temperature phase, is restored an
vides an indication that the monopole constituents are the relevant degrees of freedom
the confined phase.

Also lattice studies, both using cooling[8] and chiral fermion zero-modes[9] as fil-
ters, have now confirmed that monopole constituents do dynamically occur in the confin
phase. A charge 1 caloron is seen for SU(n) to consist ofn constituent monopoles. In th
deconfined phase, due to the fact that the average Polyakov loop becomes a center
the caloron returns to the form known as the Harrington–Shepard solution[1]. The latter
can also be interpreted as consisting of constituent monopoles, however, withn−1 of them
being massless.

To be precise, for self-dual configurations in the background of non-trivial holon
the masses of constituent monopoles are given by 8π2νj /β , with νj ≡ µj+1 − µj . Theµi

are related to the eigenvalues of the Polyakov loop at spatial infinity,

(1)P∞ = lim
x→∞Pexp

( β∫
0

A0(t, �x) dt

)
= g† exp

(
2πi diag(µ1,µ2, . . . ,µn)

)
g

(this expression assumes the periodic gaugeAµ(t, �x) = Aµ(t +β, �x)) whereg is the gauge
rotation used to diagonalizeP∞ andβ is the period in the imaginary time direction, relat
to the inverse temperature. The eigenvalues exp(2πiµj ) are to be ordered on the circle su
thatµ1 � µ2 � · · · � µn � µn+1, with µn+j ≡ 1+µj and

∑n
i=1 µi = 0, which guarantee

that the masses add up to 8π2/β , the instanton action per unit (imaginary) time. At high
topological chargek, the parameter space of widely separated constituent monopo
described bykn monopole constituents,k of each of then types of Abelian charges (wit
overall charge neutrality).

We established in an earlier paper[10] that well-separated constituents act as po

sources for the so-called far field (that is far removed from any of the cores). When con-
stituents of opposite charge (n constituents of different type) come together, the action
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Fig. 1. In the middle is shown the action density in the plane of the constituents att = 0 for an SU(2) charge 2
caloron with trP∞ = 0, in the regime where constituents are not well separated. On a scale enhanced by
10π2 are shown the densitities for the two zero-modes, using either periodic (left) or anti-periodic (right) bound-
ary conditions in the time direction. This solution is for the so-called “crossed” configuration withk = 0.997 and
D = 8.753, see Section4 for more details.

density no longer deviates significantly from that of a standard instanton. Its scale
meterρ is related to the constituent separationd throughρ2/β ≈ d . Yet, the gauge field
is vastly different, as is seen from the fact that within the confines of the peak theren

locations where two of the eigenvalues of the Polyakov loop coincide[11,12], thus in some
sense varying over the maximal range available (e.g., for SU(2) from12 to −12), whereas
for trivial holonomy only one such location is found.

On the other hand, when constituents of equal charge come together typically
tended core structure is found. This was deduced, in particular for the case of ch
calorons, from our ability to analytically determine the zero-mode density (summed
the two zero-modes implied by the index theorem) in the far field limit, neglecting e
nential contributions.1 In this limit it forms a singular distribution on a disc bounded
an ellipse, but approaches two delta functions for well-separated like-charge consti
This zero-mode density only sees constituents of a given charge, depending on the
ary condition for the fermions in the imaginary time direction, which can be chosen to
U(1) phase (containing the physically relevant choice of anti-periodic boundary condition
for thermal field theory). We will show for SU(2) that their difference for periodic
anti-periodic boundary conditions coincidesexactly with the (Abelian) charge distributio
extracted from the gauge field in the same limit, making contact with an old result d
Hurtubise[13] for the asymptotic behaviour of the monopole Higgs field.
1 This is in some sense equivalent to the high temperature limit, with constituent masses given by 8π2νm/β,
such that the range of the exponential contributions shrinks inversely proportional with the temperature.
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We found two particular parametrizations within the SU(2) charge 2 moduli spac
exhibited these extended charge distributions. The first includes as a limit arbitrary c
2 monopoles. The second of these parametrizations contains as a limiting case the axia
symmetric configurations constructed for arbitrary charge in Ref.[14]. Deforming away
from the axial configuration the two discs overlap. Describing the intricate behavio
the non-Abelian core of these configurations in this region of the parameter space re
one to find exact solutions, which are presented here. We rely on early work of
[15] and Panagopoulos[16] for charge 2 magnetic monopoles, which is simplified to so
extent by our formalism that uses the relation between the Fourier transformation
ADHM construction (as relevant for the finite temperature case) and the Nahm tra
mation, a crucial ingredient forour success to find explicit solutions[3]. Fig. 1 gives a
particular example for the action and zero-mode densities of a charge 2 caloron so
The two-dimensional zero-mode basis is chosen such that each zero-mode only locali
on one of the constituents of a given charge, showing both the zero-modes with pe
and anti-periodic boundary conditionsin the imaginary time direction.

This paper is organized as follows. In Section2 we will outline the construction, intro
duce the Green’s function that is computed through the analogy of an impurity sca
problem, and summarize the various limits that can be formulated before explicitly so
for the Green’s function. In Section3 we present the method that allows one to find
exact solution for the Green’s function, first for the general case and then applied in
detail to that of topological charge 2 calorons. Readers only interested in the results
skip Sections2.2 and 3. In Section4 we discuss the two classes of configurations in
moduli space of the charge 2 calorons and provide plots of the various quantities to illu
trate the properties of the exact results. In Section5 we discuss the relation between t
algebraic tail of the gauge field and the zero-mode density. We end with some discu
An Appendix Apresents a new result for the limiting behaviour of the action density.

2. Outline of the construction

There are two steps in the construction of chargek caloron solutions. The first ste
involves finding aU(k) gauge fieldÂµ(z), which satisfies the self-duality equation, i.
the Nahm equation[15], on a circle parametrized byz, with z introduced through replacin
the original SU(n) gauge fieldAµ(x) by Aµ(x) − 2πizδ0µ1n. Although not affecting the
field strength, this changes the holonomy to exp(−2πizβ)P∞, revealing thatz has period
β−1. The index theorem guarantees the existence ofk zero-modesΨ (x; z) which satisfy
the Dirac equation, or in the two-component Weyl form

(2)D̄zΨ (x; z) ≡ σ̄µDµ
z Ψ (x; z) ≡ σ̄µ

(
∂µ + Aµ(x) − 2πizδ0µ1n

)
Ψ (x; z) = 0

with σ̄µ = σ †
µ = (12,−i �τ) (τi are the usual Pauli matrices). We may removez from

the gauge fieldAµ(x) by transforming the zero-mode tôΨz(x) ≡ exp(−2πitz)Ψ (x; z),
which is at the expense of making the zero-mode only periodic up to a phase

Ψ̂z(t + β, �x) = exp(−2πizβ)Ψ̂z(t, �x). In a similar way we could introduce�z through
Ψ (x; z, �z) ≡ exp(2πi�z · �x)Ψ (x; z), which replaces in Eq.(2) Aµ(x) by Aµ(x)− 2πizµ1n,
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wherez0 ≡ z. Assuming thek zero-modesΨ (a)(x; z, �z) to be orthonormal one has

(3)Âab
µ (z) =

∫
Ψ (a)(x; z, �z)† ∂

∂zµ

Ψ (b)(x; z, �z) d4x,

or equivalently (demonstrating as well thatÂ does not depend on�z)

Âab
0 (z) =

∫
Ψ (a)(x; z)† ∂

∂z
Ψ (b)(x; z) d4x,

(4)Âab
k (z) = 2πi

∫
Ψ (a)(x; z)†xkΨ

(b)(x; z) d4x.

We have shown hoŵAµ(z) can alternatively be related to a Fourier transformation of
ADHM construction of instantons[17], that periodically repeat (up to a gauge rotation w
P∞) in the imaginary time direction, so as to turn an infinite charge instanton inR4 to one
of finite charge and finite temperature. The derivation of this relation will not be repea
here, see Refs.[3,14] for the details.

The connection to the ADHM construction has been useful to simplify the second
in the construction of the caloron solutions, namely how to reconstruct the original g
field when given a solution to the Nahm equation[15] (which is equivalent to the quadrat
ADHM constraint),

(5)
d

dz
Âj (z) + [

Â0(z), Âj (z)
] + 1

2
εjk�

[
Âk(z), Â�(z)

] = 2πi
∑
m

δ(z − µm)ρ
j
m.

For convenience of notation we will henceforth use the classical scale invariance
β = 1. The singularities in the Nahm equation appear precisely for those values whe
e−2πizP∞ has one of its eigenvalues equal to 1, atz = µi . This is where some fermio
field components become massless, i.e., the zero-mode becomes delocalized, whe
generic values ofz it is exponentially localized, which has turned out to be a useful to
pinpoint the constituent monopoles.

One could apply the Nahm transformation again, introducingÂµ(z) − 2πixµ1k (with
x0 ≡ t) and find then chiral fermion zero-modes in the background of this gauge fi
The construction is somewhat complicated dueto the presence of the singularities, who
structure is determined from the matrices�ρm which appear in the Nahm equation. Not
�ρm are independent, e.g., integrating and tracing the Nahm equation yields the cond∑n

m=1 Tr �ρm = �0. Further constraints are implied[14] by the fact that one may introduc

(as is most easily seen in relation to the ADHM construction)k two-component spinorsζ †
a

in the n̄ representation of SU(n), such that

(6)2πζ †
a Pmζb = σ0Ŝ

ab
m − �τ · �ρab

m ,

∑n
wherePm are projections defined throughP∞ = m=1 e2πiµmPm (Ŝm will appear in
Eq.(8)).
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2.1. The Green’s function

However, with reference to the ADHM construction, there is great benefit in first fin
the solution for the Green’s function,̂fx(z, z′) ≡ ĝ†(z)fx(z, z′)ĝ(z′), where

(7)

{
− d2

dz2
+ V (z; �x)

}
fx(z, z′) = 4π21kδ(z − z′),

with

V (z; �x) ≡ 4π2 �R2(z; �x) + 2π
∑
m

δ(z − µm)Sm, Sm ≡ ĝ(µm)Ŝmĝ†(µm),

(8)Rj (z; �x) ≡ xj − (2πi)−1ĝ(z)Âj (z)ĝ
†(z),

andSm playing the role of “impurities”. This is formulated in the gauge where first
transformÂ0(z) to a constant (diagonal) matrix, 2πiξ0, as is always possible in one d
mension, and then use

(9)ĝ(z) ≡ exp
(
2πi(ξ0 − x01k)z

)
, Tr ξ0 = 0

(when Trξ0 �= 0 it is absorbed in a shift ofx0) to transformÂ0 − 2πix01k to zero. This is
at the expense of introducing periodicity up to a gauge transformation; althoughf̂x(z, z′)
is periodic inz andz′ with period 1 (forβ = 1), fx(z, z′) no longer is.2

Given a solution for the Green’s function, there are straightforward expressions f
gauge field[14] (only involving the Green’s function evaluated at the “impurity” locatio
and the fermion zero-modes[10,18]. For the zero-mode density this gives

(10)Ψ̂ (a)
z (x)†Ψ̂ (b)

z (x) = −(2π)−2∂2
µf̂ ab

x (z, z).

In this paper we will only have need for the Green’s function atz′ = z, which formally can
be expressed as

fx(z, z) = −4π2((12k −Fz)
−1)

12,

(11)Fz ≡ ĝ†(1)Pexp

z+1∫
z

(
0 1k

V (w; �x) 0

)
dw,

where the(1,2) component on the right-hand side of the first identity is with respect to th
2× 2 block matrix structure. In particular thisleads to a compact expression for the act
density[3,14]

(12)S(x) ≡ −1

2
trF 2

µν(x) = −1

2
∂2
µ∂2

ν logdet
(
ie−πix0(12k −Fz)

)
,

which can be shown to be independent of the choice ofz.
2 It is in this respect interesting to note thatĝ(1) plays the role of the holonomy associated to the dual Nahm

gauge fieldÂµ(z).



m-

) ma-
ice
ns of
ssions

d

other
se we
s

F. Bruckmann et al. / Nuclear Physics B 698 (2004) 233–254 239

The formal expression forFz can be made explicit by a decomposition into the “i
purity” contributionsTm at z = µm and the “propagation”Hm ≡ Wm(µm+1,µm) between
µm andµm+1. Forz ∈ (µm,µm+1) this gives

(13)

Fz = Wm(z,µm)TmHm−1 · · ·T2H1T1ĝ
†(1)HnTnHn−1 · · ·Tm+1HmWm(µm, z),

with

Tm ≡
(

1k 0
2πSm 1k

)
,

(14)Wm(z, z′) ≡
(

f +
m (z) f −

m (z)
d
dz

f +
m (z) d

dz
f −

m (z)

)(
f +

m (z′) f −
m (z′)

d
dz

f +
m (z′) d

dz
f −

m (z′)

)−1

.

The columns of the twok × k matricesf ±
m (z), defined forz ∈ (µm,µm+1), form the 2k

solutions of the homogeneous Green’s function equation,

(15)

(
d2

dz2 − 4π2 �R2(z; �x)

)
v̂(z) = 0,

of which those inf +
m (z) are exponentially rising and those inf −

m (z) are exponentially
falling. This implies[14] f ±

m (z) → exp(±2π |�x|(z − µm)1k)C
±
m for |�x| → ∞, in which

C±
m ≡ f ±

m (µm) can be arbitrary non-singular (to ensure a complete set of solutions
trices. In Ref.[10] we putC±

m = 1k , but here we find it convenient to leave this cho
open. With the “impurity” scattering problem solved, constructing the exact solutio
the homogeneous Green’s function equation is the last step in finding analytic expre
for the higher charge calorons.

2.2. Limiting cases

Nevertheless, approximate solutions can be derived, either assuming�x is far removed
from any core such that the gauge field has become Abelian (which we called the far fiel
limit, denoted by a subscript “ff”), or assuming�x and the constituents of typem (belonging
to themth interval) are well separated from all others, but not necessarily from each
(which was called the zero-mode limit, denoted by a subscript “zm”). This is becau
found[10] that forz ∈ (µm,µm+1) thek zero-modeŝΨ (a)

z (x) only “see” the constituent
of typem. Forµm � z � µm+1 we have

f zm
x (z, z) = π

(
f −

m (z)f −
m (µm+1)

−1 − f +
m (z)f +

m (µm+1)
−1Z−

m+1

)
× (

f −
m (µm)f −

m (µm+1)
−1 − Z+

mf +
m (µm)f +

m (µm+1)
−1Z−

m+1

)−1

(16)× (
f −

m (µm)f −
m (z)−1 − Z+

mf +
m (µm)f +

m (z)−1)R−1
m (z),

up toexponential corrections in the distance to the constituents of typem′ �= m, with

Z−
m ≡ 1k − 2Σ−1

m Rm−1(µm), Z+
m ≡ 1k − 2Σ−1

m Rm(µm),
(17)Rm(z) ≡ 1

2

(
R+

m(z) + R−
m(z)

)
, Σm ≡ R−

m(µm) + R+
m−1(µm) + Sm
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and

(18)2πR±
m(z) ≡ ±

(
d

dz
f ±

m (z)

)
f ±

m (z)−1.

In the zero-mode limitZ+
m andZ−

m+1 approach1k up toalgebraic corrections. Neglecting
these contributions as well, e.g., by sending the constituents of typem′ �= m to infinity,
leads to the so-called monopole limit (denoted by a subscript “mon”), further simpli
the expression for the Green’s function to

(19)f mon
x (z, z) = −πU(z,µm+1)U

−1
m (µm,µm+1)Um(µm, z)R−1

m (z),

with3

(20)Um(z, z′) ≡ f +
m (z)f +

m (z′)−1 − f −
m (z)f −

m (z′)−1.

In turn, from Eq.(16) one may derive the far field limit, giving up toexponential cor-
rections in the distance toall constituents

(21)f ff
x (µm,µm) = 2πΣ−1

m ,

as is relevant for the expression of the gauge field in this limit[14]. For the zero-mode
density (Eq.(10)) we may use forµm < z < µm+1 (z strictly different fromµm,µm+1)

(22)f ff
x (z, z) = πR−1

m (z).

The discontinuity in this limit,πRm(µm) �= 2πΣ−1
m �= πRm−1(µm), arises due to th

zero-mode developing a massless component whenz approachesµm. It might seem tha
Eq. (22), combined with Eq.(10), is inconsistent with an exponential decay. Howeve
turns out that[10]

(23)Vm(�x) ≡ (4π)−1 Tr
(
R−1

m (z)
)

is independent ofz in themth interval and harmonic everywhere (hence giving vanish
zero-mode density) except for some singularities in the cores of the constituents o
m. It is this feature, and our ability to computeVm(�x) exactly for SU(2) charge 2 caloron
that allowed us to make statements about the localization of the cores, without solv
Green’s function exactly.

In Appendix Awe derive the following new result for the monopole limit of the act
density (Eq.(12)). In the limit where�x and the constituent locations of typem are well
separated from all other constituents, for which both the action and zero-mode de
are static, we find (withUm defined in Eq.(20))

(24)Smon(�x) = −1

2
∂2
i ∂2

j logdet
[
Um(µm+1,µm)R−1

m (µm)
]
,

up toalgebraic corrections. This is a direct generalization for the action density of a s
BPS monopole,S(�x) = −1

2∂2
i ∂2

j log[sinh(2πνm|�x|)/|�x|] (located at the origin and wit
3 Note thatUm(z, z′) satisfies the Green’s function equation with boundary conditionsUm(z, z) = 0 and
d
dz

Um(z, z′) = − d
dz′ Um(z, z′) = 2πRm(z), for z′ → z.
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mass 8π2νm). We emphasize that this result can be used irrespective of the distan
tween the constituents of the same typem. Eq. (24) therefore gives in terms off ±

m (z)

a closed form expression for the multi-monopole energy density. The same holds
using Eq.(19), for the zero-mode density (Eq.(10)). For the caloron it involves takin
the limit where all constituents of typem′ �= m are sent to infinity, which is why this i
called the monopolelimit. We recall, that in the far field one should use[14] (see also
Appendix A)

(25)S ff (�x) = −1

2
∂2
i ∂2

j

n∑
m=1

logdet
(
f +

m (µm+1)f
+
m (µm)−1R−1

m (µm)Σm

)
.

3. Exact results

Finding the exact homogeneous solutions of the Green’s function equation, Eq(15),
closely follows Nahm’s method[15] to construct the dual chiral zero-modes. The m
advantage of our approach is that we neednot worry about boundary conditions, as this
solved by the “impurity” scattering formalism[14]. In the following we restrict ourselve
to a given intervalz ∈ (µm,µm+1) and work in the gauge wherêA0(z) − 2πix01k = 0.

Using thatÂµ(z) is self-dual, a consequence of the Nahm equation, one easily s

thatD̂†
xD̂x = − d2

dz2 + 4π2 �R2(z; �x), such that it is natural to consider the equation

(26)D̂xψ̂(z) = σµD̂µ
x ψ̂(z) =

(
d

dz
− 2π �τ · �R(z; �x)

)
ψ̂(z) = 0.

It follows that ψ̂(z) would be a homogeneous solution of the Green’s function equa
albeit thatψ̂(z) is a spinor (with a chirality opposite to that for the zero-modes invo
in the Nahm transformation, cf. Eq.(2)). We follow Nahm[15] and use the ansatẑψ(z) =
(12 + �u(�x) · �τ )|s〉 ⊗ v̂(z), wherev̂(z) is a k-dimensional complex vector,�u(�x) is a unit
vector that does not depend onz and|s〉 is an arbitrary normalized constant spinor (as lo
as it is not annihilated by12 + �u(�x) · �τ ). It then follows that̂v(z) = 〈s|(12 − �u(�x) · �τ )ψ̂(z)

satisfies Eq.(15).
The unit vector�u(�x) is found from a complex vector�y(x) which squares to 0

�y(�x) · �y(�x) = 0, implying its real and imaginary parts are perpendicular and of equal leng
( �= 0 as long as�y(�x) �= �0), such that (for ease of notation the�x dependence of�y and�u will
henceforth be left implicit)

(27)�u = i �y × �y∗/(�y · �y∗)
is well defined and�u× �y = −i �y, i.e., Re(�y), Im(�y) and�u form an orthogonal set of vector
Using the ansatz for̂ψ(z) and introducing

(28)Ŷ (z) ≡ −�y · �R(z; �x), Û(z) ≡ −2π �u · �R(z; �x),

leads to the equations

(29)Ŷ (z)v̂(z) = 0,
d

v̂(z) = Û(z)v̂(z)

dz

for which the first one can only have a solution provided detŶ (z) = 0.
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It is the great beauty of Nahm’s formalism that detŶ (z) is a conserved quantity. That i
d
dz

Âj (z) = −1
2εjk�[Âk(z), Â�(z)] (the Nahm equation(5) restricted to an interval and i

the gauge wherêA0 = 0) implies d
dz

detŶ (z) = 0 for any choice of�x and�y on a null-cone

in C3 (or rather inCP 2 since we may rescale�y with a non-zero complex factor withou
changing the equations). The conserved quantities are generated by the symmetric t
monomials,Mi1i2...i� , built from Tr(Âi1(z)Âi2(z) · · · Âi� (z)) with � arbitrary, as one readil
verifies. For example, Tr̂Ai(z) is constant and defines the center of mass. A natural
to project on the traceless symmetric monomials is precisely through introducing�y ∈ CP 2

on a null-cone, formingyi1yi2 · · ·yi�Mi1i2...i� = yi1yi2 · · ·yi� Tr(Âi1(z)Âi2(z) · · · Âi�(z)). It
is interesting to note thatxi1xi2 · · ·xi�Mi1i2...i� |�x|−� is always a spherical harmonic of o
der�, used in Ref.[10] to show through the multipole expansion of Tr(R−1

m (z)) that it is
conserved and harmonic, except for singularities in the core of the constituents.

Once it is established that detŶ (z) is independent ofz for any choice of�x, we can look
for its zeros. Using the null-cone parametrization�y = (1

2(1− ζ 2),− i
2(1+ ζ 2), ζ ), and the

fact that the matrixŶ (z) is k-dimensional, we obtain a polynomial equation inζ of order
2k and hence there are for generic�x exactly 2k solutions. It is useful to note that the
solutions come in complex conjugate pairs, where the symmetry�y → �y∗ implies �u → −�u
andζ → −1/ζ ∗ (giving �y∗ up to a multiple, equivalent to�y∗ in CP 2).

Given a particular zero�y, we may conveniently write a vector in the kernel ofŶ (z)

as [19] v̂a(z) = φ̂(z)(adjŶ (z))ac for a fixed choice ofc, where adĵY (z) is the matrix
formed by the minors ofŶ (z). The Nahm equation is easily seen to implyd

dz
Ŷ (z) =

[Û(z), Ŷ (z)] for any choice of�y on the null-cone. From this one derives that4 d
dz

adjŶ (z) =
[Û(z),adjŶ (z)]. Substitutingv̂a(z) = φ̂(z)(adjŶ (z))ac into Eq.(29)gives

(30)
dφ̂(z)

dz

(
adjŶ (z)

)
ac

= φ̂(z)
(
adjŶ (z)Û(z)

)
ac

.

Using the fact that̂U(z) = −iuj ĝ(z)Âj (z)ĝ
†(z) − 2πujxj , we get

φ̂(z) = exp(µ̂(z) − 2πz�u · �x)√
(adjŶ (z))ac

,

(31)
dµ̂(z)

dz
= − i{adjŶ (z), uj ĝ(z)Âj (z)ĝ

†(z)}ac

2(adjŶ (z))ac

,

where the equation for̂µ(z) is the same for any value ofa (it may depend on the valu
of c). This is useful for studying the asymptotic behaviour of the solution. For large|�x|,
detŶ (z) = 0 implies that�y · �x → 0, such that (cf. Eq.(27)) �u → ±�x/|�x|. We may use the
symmetry�u → −�u to guarantee that there arek zeros�y(b) with the sign of�u(b) · �x negative,
leading to solutions that rise as exp(2πz|�x|). It then follows that thek zeros�y(b+k) = �y(b)∗

4 Assume first that�y is such that det̂Y �= 0, in which case adĵY = Ŷ−1 detŶ and therefore d
dz

adjŶ =

−Ŷ−1[Û , Ŷ ]Ŷ−1 detŶ + Ŷ−1 d

dz
detŶ = [Û ,adjŶ ] + Ŷ−1 Tr(Ŷ−1 d

dz
Ŷ ) = [Û ,adjŶ ]. Observe that adĵY is an-

alytic in �y, such that the result is valid also when�y leads to det̂Y = 0.
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give �u(b+k) = −�u(b), leading to the solutions that decay as exp(−2πz|�x|) for large |�x|.
Hence we may putf +

ab(z) = v̂
(b)
a (z) andf −

ab(z) = v̂
(b+k)
a (z). Defining

(32)m̂+
ab(z) = −(

adj�y(b) · �R(z; �x)
)
ac

, m̂−
ab(z) = −(

adj�y(b)∗ · �R(z; �x)
)
ac

,

which arealgebraic in Âj (z) andxj , we find

(33)f +
ab(z) = m̂+

ab(z)φ̂
(b)(z), f −

ab(z) = m̂−
ab(z)φ̂

(b+k)(z),

whereφ̂(z) contains the exponential dependencies, and thus seemingly all the inform
about the cores of the constituents. To make this more precise we computeR±(z), see
Eq. (18), using that Eq.(29) implies (with �u(b+k) = −�u(b)) d

dz
f ±

ab(z) = ∓2π
∑k

d=1 �u(b) ·
�Rad(z; �x)f ±

db(z), finding that the factorŝφ(b)(z) drop out

(34)R±
ad(z) = −

k∑
b,e=1

�u(b) · �Rae(z; �x)m̂±
eb(z)

(
m̂±(z)−1)

bd
.

This proves thatR±
m(z) is purely algebraic inÂj (z) andxj , as areΣm andRm(z), which

determine the far field limit for the zero-mode density and the gauge field.
One might wonder how, given that thêψ(b)(z) are of the “wrong” chirality in the con

text of the Nahm transformation, one could use these results to reconstruct the gau
for magnetic monopoles where the relation to the ADHM construction is not readily avai
able. For this one observes that the columns ofψ̂(b)(z) can be used to form a 2k × 2k

matrix w(z). Using thatD̂xw(z) = 0, one findsD̂†
x(w†(z)−1) = 0. Thus the columns o

w†(z)−1 give 2k independent solutions foreach interval, from whichn normalizable so-
lutions Ψ̂ (p)(z; �x) should remain after imposing the appropriate boundary (cq. matc
conditions. These are then used in Nahm’s original construction to compute the gaug
(cf. Eq.(3))

(35)Apq
µ (x) =

∫
Ψ̂ (p)(z;x0, �x)† ∂

∂xµ

Ψ̂ (q)(z;x0, �x) dz,

whereΨ̂ (p)(z;x0, �x) ≡ ĝ†(z)Ψ̂ (p)(z; �x).
There seems to be considerable advantage in using the Green’s function (Fourier tran

formed ADHM) method, since it can solve the matching conditions without relying on the
availability of exact solutions for the normalizable dual zero-modes. To go beyond the
proximations discussed in Section2.2 and resolve the constituent cores we need to s
for µ̂(z). This cannot always be done in closed form, but it is given by an explicit inte
which can be performed numerically when required. For charge 2 monopoles Pana
los [16] was, however, able to find the exact integral. We can use the same ingre
for the caloron case and explicitly solve for the Green’s function in the case of cha
calorons.

3.1. Analytic expressions for charge 2
For charge 2 the number of invariants associated to the conserved quantities of the
Nahm equation is 8, of which Tr̂Aj(z) ≡ 4πiaj are related to the center of mass for the
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constituents of given magnetic charge, coming from the interval under consideration. A
suming now thatÂj (z) is traceless, 5 invariants remain, given in terms of the symm
traceless tensor

(36)Mij ≡ −1

2

(
Tr

(
Âi(z)Âj (z)

) − 1

3
δij Tr

(
Â2

k(z)
))

.

Three of its parameters are associated to the rotationR which diagonalizes the 3×3 matrix,
M = Rdiag(c1, c2, c3)Rt , whereR is fixed by requiringc2 � c1 � c3. Theci add to zero
and can be expressed in terms of the so-called scale (D) and shape (k) parameters,

(37)c1 = D2 1− 2k2

12
, c2 = D2 k2 − 2

12
, c3 = D2 1+ k2

12
.

The Nahm equation for the case of charge 2 can be solved completely in terms of
elliptic functions[20,21], which was summarized in Ref.[10]

(38)ĝ(z)Âj (z; �a,R, h,D,k)ĝ†(z) ≡ 2πiaj12 + 1

2
iDRjbfb

(
D(z − z0)

)
h†τbh,

whereh is a global gauge parameter and

(39)

f1(z) ≡ k′

cnk(z)
, f2(z) ≡ k′ snk(z)

cnk(z)
, f3(z) ≡ dnk(z)

cnk(z)
, k′ ≡

√
1− k2

with5 snk(z) = sin(ϕ(z)), cnk(z) = cos(ϕ(z)) and dnk(z) =
√

1− k2 sn2
k(z) the standard

Jacobi elliptic functions. This does not yet address the matching ofÂj (z) on the different
intervals, where some difference between the monopole and caloron application a
For the caloron, apart from the axially symmetric solutions constructed in Ref.[14], we
found two sets of non-trivial solutions that interpolate between overlapping and
separated constituents. It is for these classes of solutions that we will resolve the
when constituents overlap and the non-linearity plays an important role.

The next step in the construction is finding the zeros�y of detŶ (z). One has

(40)detŶ (z) = yiyj

(
xixj − 1

3
�x2δij − (2π)−2Mij

)
,

where we used�y2 = 0. Substituting a parametrization for this null-cone inCP 2, e.g.,
�y = (1

2(1 − ζ 2),− i
2(1 + ζ 2), ζ ), gives a 4th order polynomial. However, for findin

the 4 solutions we find it in this case more convenient to first diagonalize the m
xixj − 1

3 �x2δij − (2π)−2Mij =OikλkOjk . Introducing�y ′ =Ot �y, the equation for the zero
reduces to(y ′

1)
2λ1 + (y ′

2)
2λ2 + (y ′

3)
2λ3 = 0, which in addition to the null-cone conditio

(y ′
1)

2 + (y ′
2)

2 + (y ′
3)

2 = 0, is now easily solved by

�y(a)′ = (√
λ2 − λ3, (−1)a+1

√
λ3 − λ1, i

√
λ2 − λ1

)
,

(41)�y(a+2)′ = (�y(a)′)∗, a = 1,2,
5 ϕ(z) implicitly defined by the elliptic integral of the first kindz = ∫ ϕ(z)
0 1/

√
1− k2 sin2 θ dθ .
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where we fixed (for generic�x) the diagonalizing rotationO by orderingλ1 � λ3 � λ2.
Using Eq.(27)we find for �u′ ≡Ot �u

(42)�u(a)′ = −
(

(−1)a
√

λ3 − λ1√
λ2 − λ1

,

√
λ2 − λ3√
λ2 − λ1

,0

)
, �u(a+2)′ = −�u(a)′, a = 1,2.

One easily checks that�u(1,2) and �u(3,4) give rise to, respectively, the exponentially risi
and falling solutions.

It is also instructive to give the explicit expressions for the matricesm̂±(z) in Eq. (32)
(choosingc = 2). We note that for a 2× 2 matrix adjŶ = (Tr Ŷ )12 − Ŷ , and without loss
in generality6 we takez0 = 0, �a = �0,R = 13, D = 1 andh = 12 in Eq.(38), such that

m̂+(z) = − 1

4π

(
y

(1)
1 f1(z) − iy

(1)
2 f2(z) y

(2)
1 f1(z) − iy

(2)
2 f2(z)

4π �x · �y(1) − y
(1)
3 f3(z) 4π �x · �y(2) − y

(2)
3 f3(z)

)
,

(43)m̂−(z) = − 1

4π

(
y

(3)
1 f1(z) − iy

(3)
2 f2(z) y

(4)
1 f1(z) − iy

(4)
2 f2(z)

4π �x · �y(3) − y
(3)
3 f3(z) 4π �x · �y(4) − y

(4)
3 f3(z)

)
.

We checked that Eq.(23), V(�x) = (2π)−1 Tr(R+(z) + R−(z))−1, evaluated using Eq.(34)
is independent ofz and agrees with the result derived in Ref.[10].

We next address solving Eq.(31), which for charge 2 can be written as7

(44)
dµ̂(z)

dz
= Mijuiyj δ

ac − 2πi(�x · �y)uiÂ
ac
i (z)

2π(�x · �y)δac − iyiÂ
ac
i (z)

.

For the same choice of parameters in Eq.(38)as above,z0 = 0, �a = �0,R = 13, D = 1 and
h = 12, this gives (witha = 1 andc = 2)

(45)
dµ̂(z)

dz
= 2π(�x · �y)

u1f1(z) − iu2f2(z)

y1f1(z) − iy2f2(z)
.

Although the dependence on�x is complicated, the integral overz turns out to be man
ageable (as was observed before in the context of charge 2 monopoles, although
choose not to express the solution in terms of theta functions[16]). To solve the equatio
we first rewrite the right-hand side of Eq.(45)using the fact that�u× �y = −i �y (cf. Eq.(27)),

u1f1(z) − iu2f2(z)

y1f1(z) − iy2f2(z)
= (u3y1 + iy2)f1(z) − i(u3y2 − iy1)f2(z)

y3(y1f1(z) − iy2f2(z))

= f1(z)f2(z)y
2
3 + 4iy1y2(k′)2

y3(16π2(�x · �y)2 − y2
3f 2

3 (z))
+ u3

y3
.

In the last identity we used that�y2 = 0, f 2
1 (z) − f 2

2 (z) = 1 − k2 = (k′)2 and the fact tha
detŶ (z) = 0 implies(y1f1(z)− iy2f2(z))(y1f1(z)+ iy2f2(z)) = 16π2(�x · �y)2 − y2

3f 2
3 (z).
6 We may changez0, �a, h, R andD by, respectively, translations, (gauge) rotations, and suitable rescalings.
7 Using that1

2{Âi , Âj }yiuj = 1
212 Tr(Âi Âj )yiuj = −Mij yiuj12, since�u · �y = 0.
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With d
dz

f3(z) = f1(z)f2(z) we can now integrate Eq.(45),

µ̂(z) = 2πz(�x · �y)
u3

y3
+ 1

4
log

(
4π �x · �y + f3(z)y3

4π �x · �y − f3(z)y3

)
+ i

sign(z)(k′)2

2π(�x · �y)

y1y2

4y3
I (z),

(46)I (z) ≡ Πk
(
f −1

3 (z), n
) − Πk(1, n) + |z|, n ≡ (4π �x · �y)2

y2
3

,

up to an irrelevant constant, whereΠk(s, n) is the elliptic integral of the third kind8

(47)Πk(s, n) ≡
s∫

0

dt

(1− nt2)
√

(1− k2t2)(1− t2)
.

We now combine these ingredients to give in terms of�y the exact form for the homoge
neous solution of the Green’s function equation,

(48)v̂a(z) = φ̂(z)
(
adjŶ (z)

)
a2 = exp

(
µ̂(z) − 2πz�u · �x) (adjŶ (z))a2√

(adjŶ (z))12

or putting in all the relevant expressions

v̂a(z) = exp

(
i

z

y3

[
2π(�y × �x)3 + y1y2(k′)2

8π(�x · �y)|z|
(|z| + Πk

(
f −1

3 (z), n
) − Πk(1, n)

)])

(49)

× (4π)−1/2(−y1f1(z) − (−1)aiy2f2(z)
)1/2

(
4π �x · �y − (−1)ay3f3(z)

4π �x · �y + (−1)ay3f3(z)

)1/4

.

Substituting�y = �y(b) = Ot �y(b)′, with �y(b)′ as defined in Eq.(41) givesf +
ab(z) = v̂

(b)
a (z)

andf −
ab(z) = v̂

(b+2)
a (z), and thereby the Green’s function, once we specify the param

involved in the solutions to the Nahm equation.

4. Action and zero-mode density plots

The discontinuities inÂj (z) at z = µ1 and z = µ2 implied by the Nahm equation
Eq. (5), impose constraints which are (like the quadratic ADHM constraint) in gen
difficult to solve. Work is in progress to describe the full parameter space for SU(2
charge 2, but in Ref.[10] we did find two non-trivial parametrizations for which we illu
trate here in a number of figures how the full caloron solutions look like, using the
Green’s function as constructed in the previous section. Taking advantage of the pos

8 More commonly the elliptic integral of the third kind is defined asΠ(n;ϕ,k) = Πk(sinϕ,n). Note that

I (z) can alternatively be written as
∫ f3(z)

1 (1− t2/n)−1(t2 − k2)−1/2(t2 − 1)−1/2dt , from which it follows that

d
dz

I (z) = ((1− nf 2
3 (z))|f1(z)f2(z)|)−1 d

dz
f3(z) = sign(z)(1− nf 2

3 (z))−1, usingf 2
3 (z) − 1 = f 2

2 (z), f 2
3 (z) −

k2 = f 2
1 (z) and d

dz
f3(z) = f1(z)f2(z).
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Fig. 2. An example to illustrate the location of the discsingularities (light and dark shaded according to magn
charge) for a rectangular (left) and crossed(right) configuration. The latter is shown atα = −π/2, for d = π/32
andθ = π/4 (k = 0.962,D = 3.894 andϕ = −π/4). The curves indicate the would-be constituent location
fixed d andθ , varyingα from −π (to which the arrows point) to 0. Forα = −π and 0 the discs collapse to line
(k = 1) with no singularities remaining, except at the endpoints.

to work with arbitrary arithmetic precision the programme Maple has been used for
calculations. The configurations are formulated in terms of the two intervalsz ∈ [µ1,µ2]
andz ∈ [µ2,1 + µ1], each associated with two constituent monopoles of equal magne
charge, but opposite in sign from one interval to the next. Apart from a shift and (g
orientation, the configuration is described by a shape (k) and scale (D) parameter (se
Section3.1), for simplicity assumed to be the same on both intervals. We also tak
constituents to be of equal mass,ν1,2 = 1

2 (µ2 = −µ1 = 1
4), most relevant for the confine

phase with trP∞ = 0.
The two periodic and two anti-periodic chiral fermion zero-modes each have supp

on oppositely charged constituents (seeFig. 1) and in the far field limit it was found tha
the zero-mode density (summed over the two zero-modes implied by the index the
is described by a disc singularity, bounded by an ellipse with semi-major axisD/4π and
eccentricity(1−k′)/(1+k′) (wherek′ = √

1− k2). This revealed that the core of a clus
of like-charged constituents is in general extended, unless the individual constitue
well separated. The far field only describes the (algebraic) Abelian component of the
field and to resolve the structure of the core we need to determine the full non-A
structure.

For the first parametrization (called “rectangular”) the two discs are parallel and
rated in height by a distanced . The configuration is charaterized by the two extremal po
along the major axis of the disc, also calledwould-be constituent locations9

(50)�y(j)
m =

(
0,

1

2
(−1)md, (−1)j (4π)−1D

)
, 2πd = Df2

(
1

4
D

)
,

up to an overall shift and orientation (the definition off2(z), which involvesk, can be found
in Eq.(39)). A typical example is shown inFig. 2(left). Apart fromk andD, the parameter
9 In their immediate neighbourhood the action density is maximal; they are the constituent locations in the
point-like limit, k → 1.
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Fig. 3. Shown is the energy density (middle) forµ2 = 0.25, k = 0.570 andD = 6.915, in the monopole limit
d → ∞ and in thex–z plane through one of the discs for the rectangular configuration, seeFig. 2(left). On a
scale enhanced by a factor 4π2 are shown the densities for the two monopole zero-modes (left and right).

that enter Eq.(38) for the mth interval are�a = (0, 1
2(−1)md,0), R = 13, h = 12 and

z0 = 1
4(1+ (−1)m). In all cases discussed here we have also putξ0 = 0. One verifies tha

the discontinuities ofÂj (z) at z = µm are given by 2πiρ
j
m with appropriately chosenζa

(cf. Eq.(6)), as discussed in detail in Ref.[10].
For the second parametrization (called “crossed”) the two discs are coplanar and

sect, seeFig. 2(right) for a typical example. Their relative orientations can vary betwee
perpendicular and coinciding (for whichk is forced to 1). Here we choose for the param
ters in Eq.(38)h andR to be non-trivial (isospin) rotations around they-axis with angles
(−1)mθ , respectively,(−1)mϕ, and�a = (0,0,−1

2(−1)m d cosα), whereasz0 andξ0 are as
in the rectangular case. The would-be constituent locations are now given (up to an over
shift and orientation) by

(51)�y(j)
m =

(
(−1)j (4π)−1D sinϕ,0, (−1)m+j (4π)−1D cosϕ − 1

2
(−1)md cosα

)
,

where±ϕ conveniently gives the orientation of each of the two discs with respect to t
z-axis. The angleα originates from the definition ofζa , which through Eq.(6) determines
the discontinuity ofÂj (z). To ensure the proper matching, the following three equat
need to be satisfied[10]

D sin(θ ± ϕ)

[
f3

(
1

4
D

)
± f1

(
1

4
D

)]
= 8πd(1± sinα),

(52)Df2

(
1

4
D

)
+ 8πd sinα = 0,

which determineϕ, k andD for givenα, θ andd . Fig. 2 illustrates that for these crosse
configurations the two discs always overlap, unlike for the rectangular case. This f

an important motivation for the present study, so as to determine in how far the overlapping
discs would affect the behaviour in the core.
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Fig. 4. In the middle is shown the action density in the plane of the constituents att = 0 for an SU(2) charge
2 caloron with trP∞ = 0 in the crossed configuration ofFig. 2, hence withk = 0.962 andD = 3.894. On a
scale enhanced by a factor 16π2 are shown the densities for the two zero-modes, using either periodic (le
anti-periodic (right) boundary conditions in the time direction.

We will illustrate, using the exact formalism, how the action and zero-mode densiti
these solutions behave. For the rectangular case we are mostly interested in the m
limit, d → ∞. For finited , the density separates in two contributions, where each in
limit d → ∞ is exactly the density for a charge 2 monopole with the same values ofk and
D. Note that in the limitd → ∞ the matching conditions for̂Aj(z) “decouple” the inter-
vals, turning into pole conditions atz = µ1,2, as is appropriate for multi-monopoles[20].
We do recover from this the known results for the charge 2 monopoles[22], like the dough-
nut structure fork = 0, corresponding to two superimposed monopoles. The interest
monopole limit comes from the fact that thezero-mode densities for multi-monopoles h
not been studied in detail before[23]. In Fig. 3 we give the densities fork = 0.570 and
D = 6.915, which is intermediate between the doughnut and well-separated mon
configurations. On the other hand, ford small (compared toβ = 1) the configuration will
look like two non-dissociated calorons, and in particular is no longer static. WhenD re-
mains much bigger thand , forcing k → 1, these behave as two well-separated char
instantons. Otherwise, whenD is comparable tod , one finds overlapping instantons[24].

An example for the crossed configuration withk = 0.997 andD = 8.753 was already
shown inFig. 1. In this caseD is large enough for the like-charge constituents to
separated, as is particularly clear from the zero-modes, which are essentially no
overlapping. But two nearest neighbour (oppositely) charged constituents still show
ciable overlap. The distance between these nearest neighbours is1

4D
√

2/π = 0.985. As
this is comparable toβ = 1 we would expect the configuration to depend on time. Ind

at the maxima of the action density its value of 1.18× 16π2 at t = 0 is reduced by almost
50% att = 0.5. At the center of mass, where the action dencity is much lower, there is still
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a time dependence. However, far from all cores the field becomes static.10 IncreasingD
further (which will pushk closer to 1) the configuration quickly turns into well separate
spherically symmetric static BPS monopoles.

More interesting is to consider the case with smallerD, like D = 3.894 andk = 0.962,
for which the disc singularities were illustrated inFig. 2. The corresponding densities a
shown inFig. 4. We see that the constituents are now so close that they form a doughn
we stress this is different from thestatic monopole doughnut, which hask = 0. Since the
oppositely charged constituents now are as close as 0.438, which is considerably
than the time extent, the solution will have a strong time dependence. WhenD is decreased
even further, it will turn into a charge 2 instanton localized in both space and time.

5. Higgs field asymptotics

In this section we make some comments on the far field limit of the gauge field. A
discussed before, the gauge field far removed from any core becomes Abelian (as well
static). The Abelian subgroup is the one that leaves the holonomy invariant, in the pe
gauge equivalent to leaving the constant asymptotic value of the adjoint Higgs fieA0
invariant. For definiteness, let us consider the case of SU(2) withk = 2, β = 1 andP∞ =
exp(2πi �ω · �τ ) (i.e.,µ2 = −µ1 = |�ω|). Up to exponential corrections we have

(53)Aff
0(�x) = 2πi �ω · �τ − 1

2
iω̂ · �τΦ(�x),

where we can expressΦ(�x) in terms of the far field limit of the Green’s function at th
impurities[14]

(54)Φ(�x) = π−1[1− π−1 Tr
(
f̂ ff

x (µ2,µ2)Ŝ2
)]−1

∂i Tr
(
f̂ ff

x (µ2,µ2)ρ
i
2

)
.

Using the twistor description of magnetic monopoles Hurtubise[13] was able to explic-
itly compute the asymptotic Higgs field for the SU(2) magnetic monopole long ago. T
function he found for this algebraic tail amazingly agrees exactly withVm(�x), Eq. (23),
which was introduced to describe the caloron zero-mode density (m denotes the interva
and hence the type of constituents to which the corresponding zero-modes would local
[10]). As mentioned before, from our multi-caloron results one can recover the m
monopole results by sending the constituent monopoles with the “unwanted” ma
charge to infinity, cf. Eq.(24).

Although this tends to be cumbersome to show,Φ(�x) in the far field can be written
asΦ1(�x) − Φ2(�x), whereΦm(�x) is the contribution coming from the typem constituent
monopoles and the difference in sign is due to the sign change in the magnetic charg
is simply because the field is Abelian in the far field and linear superposition preserv
self-duality. Hence,Φm(�x) = 2πVm(�x), such that for the SU(2) caloron

(55)Φ(�x) = 2πV1(�x) − 2πV2(�x).
10 For any SU(n) and topological chargek the far field limit is static,provided all constituent monopoles have
a non-vanishing mass.
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We checked that this result indeed holds for the solutions discussed in Section4, even
when the two types of monopole structures are not well separated. This relation tr
holds for the axially symmetric solutions that were introduced in Ref.[14], whereΦ(�x)

was explicitly shown to factorize in a sum of point charge contributions, compatible
what was found in Ref.[10] for the zero-mode densities. Therefore, in the far field li
(i.e., for the algebraic part) the singularity structure in the zero-mode density agreesexactly
with the Abelian charge distribution, as given by∂2

i Φ(�x). Such a relation is at the hea
of using chiral fermion zero-modes as a filter to isolate the underlying topological l
from rough lattice Monte Carlo configurations[9].

6. Discussions

In this paper we have analyzed the higher charge caloron solutions and showe
to obtain exact results by suitably combining techniques developed in the context
Nahm transformation and the ADHM formalism. The aim of these studies has been
tablish that SU(n) caloron solutions of chargek can be described in terms ofkn monopole
constituents, and that these can be viewed as independent constituents. A natura
get an ensemble would be to consider approximate superpositions ofk charge 1 calorons
but this would lead to an unwanted memory effect, with constituents remembering
which caloron they originated[14]. Our studies, within the context of self-dual configu
tions, have shown nevertheless that the constituents have an independent identity,
only requirement that the net magnetic and electric charge of the configuration vanish
(each of then types of constituents should occur withthe same number). A recent latti
study[25], using the technique of over-improvement[26], fully confirms this picture.

It is therefore reasonable to consider the constituents as the independent building
for constructing an ensemble of monopole constituents, something that was not que
tioned in Ref.[7], but like for the instanton liquid[27] forms an essential assumptio
in a semi-classical study. Clearly the expectation is that semi-classical methods no
work in the confined regime, at least for the part of the parameter space that corre
to well-separated constituents, that is typically associated to instantons with a larg
parameter. It is not unlikely that the density of these constituents at low temperature
high that they form a coherent background and as such will no longer easily be reco
as lumps. With high quark densities leading to deconfinement, it may perhaps be tha
constituent monopole densitywill lead to confinement[28], although for now we have t
leave this as a speculation.

Instantons that overlap get deformed and depending on the relative gauge orie
tend to “repel”, i.e., inspecting the action density distribution they do not get closer
a certain distance[24]. When deconstructing instantons in monopole constituents, i
estingly only like-charge constituents will show this effect, manifesting itself through the
extended core structure. For unlike charges, from the point of view of the Abelian fiel
configuration behaves as with linear superposition. If as a consequence of this all A
charge is annihilated, it disappears through forming a small instanton (localized in

and time), which in the limit of zero size describes the boundary of the moduli-space. The
interaction between constituentsof opposite duality is more complicated[8,29].



, in-
e
u-
ribe
rk re-

o have
romise

d for
ael Il-
sions
M.

vili, for

umes

e

252 F. Bruckmann et al. / Nuclear Physics B 698 (2004) 233–254

In conclusion, calorons with non-trivial holonomy have revealed a rich structure
corporating traditional instanton physics, but allowing for gauge fields that inherit som
essential features associated to a confining background not present in the traditional form
lations. The fact that the underlying constituents are monopoles opens the way to desc
the confining aspects of the theory in terms of these degrees of freedom. Much wo
mains to be done when it comes to understanding the dynamics, but we hope t
convinced the reader that a consistent picture is developing that holds considerable p
for the future.
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Appendix A

In this appendix we derive the zero-mode limit for the action density, which ass
that the distance of�x and the constituents of typem to all constituents of typem′ �= m is
large, but where�x and the constituent locations of typem may otherwise be arbitrary.

As in Ref. [10] we takez = µm + 0 for computingFz and use that we can writ
det(12k −Fµm) = det(12k −LK), whereK ≡ Fm−1Θm−1 · · ·Θ1ĝ

†(1)FnΘn · · ·Θm+2Fm+1
andL ≡ Θm+1FmΘm, with

Θm ≡
(

1k 1k

2πR+
m(µm) −2πR−

m(µm)

)−1

Tm

(
1k 1k

2πR+
m−1(µm) −2πR−

m−1(µm)

)
,

(A.1)Fm ≡
(

f +
m (µm+1)f

+
m (µm)−1 0

0 f −
m (µm+1)f

−
m (µm)−1

)
.

We note theK hasno remaining dependence on the constituent locations of typem. Writ-
ing LK ≡ L̂K̂ + L̃K̃ , with

K̂ ≡
(

K++ K+−
0 1k

)
, K̃ ≡

(
0 0
K−+ K−−

)
,

(A.2)L̂ ≡
(

L++ 0
L−+ 0

)
, L̃ ≡

(
0 L+−
0 L−−

)
,

we find det(12k − LK) = det(K̂)det(K̂−1 − L̂ − L̃K̃K̂−1).
We next use( ) ( )
(A.3)K̂−1 = K−1++ −K−1++K+−
0 1k

, K̃K̂−1 = 0 0
K−+K−1++ (K−1)−−
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and note that in the zero-mode limitK−1++, K−1++K+−, K−+K−1++ and(K−1)−− are expo-
nentially small (cf. Ref.[10, Appendix A]), such that

(A.4)det
(
ie−πix0(12k − LK)

) = det
(
e−2πix0K++

)
det(L++).

With the definition ofL we now find

(A.5)L++ = 1

4
R−1

m+1(µm+1)
(
R−

m+1(µm+1) + Sm+1
)
Ũm

(
R+

m−1(µm) + Sm

)
,

where

Ũm =Z+
m+1f

+
m (µm+1)f

+
m (µm)−1R−1

m (µm)Z̃+
m

−Z−
m+1f

−
m (µm+1)f

−
m (µm)−1R−1

m (µm)Z̃−
m,

Z±
m = 1k ± (

R−
m(µm) + Sm

)−1
R±

m−1(µm),

(A.6)Z̃±
m = 1k ± R∓

m(µm)
(
R+

m−1(µm) + Sm

)−1
,

andŨm containsall contributions due to the constituent locations of typem, up toexpo-
nential corrections in the distance of these,and of �x, to the other constituents. Hen
logdet(ie−πix0(12k − LK)) splits into the sum of two contributions, logdet(Ũm) and
logdet[1

4(R+
m−1(µm) + Sm)e2πix0K++R−1

m+1(µm+1)(R
−
m+1(µm+1) + Sm+1)], where the

last term only depends on the constituent locations of typem′ �= m whose contribution
will decay inversely proportional to the fourth power of their distance. Allowing foralge-
braic decay (or in the monopole limit, sending all constituents of typem′ �= m to infinity)
such that in additionZ±

m+1 = Z̃±
m = 1k , one thus finds Eq.(24).

A simple way to derive the result for the far field limit in Eq.(25) is by noting that
in this caseall f −

m (µm+1)f
−
m (µm)−1 are exponentially small andFm can be approx

imated by diag(F++
m ,0), with F++

m = f +
m (µm+1)f

+
m (µm)−1. This therefore acts as

projection on the++ component and is thus seen to lead to det(ie−πix0(12k − LK)) =
det(e−2πix0ĝ†(1)F++

n Θ++
n · · ·F++

1 Θ++
1 ). Using the fact that[10] Θ++

m = 1
2R−1

m (µm)Σm

gives the required result.
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