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Abstract

The full ADHM-Nahm formalism is employed to find exact higher charge caloron solutions with
non-trivial holonomy, extended beyond the axially symmetric solutions found earlier. Particularly
interesting is the case where the constituent morespdhat make up these solutions, are not nec-
essarily well-separated. This is worked out in detail for charge 2. We resolve the structure of the
extended core, which was previously localized only through the singularity structure of the zero-
mode density in the far field limit. We also show that this singularity structure agrees exactly with
the Abelian charge distribution as seen through the Abelian component of the gauge field. As a
by-product zero-rade densitiesdr charge 2 magnetic monopoles are found.

0 2004 Elsevier B.V. All rights reserved.

PACS 11.10.Wx; 12.38.Lg; 14.80.Hv

1. Introduction

Calorons are instantons at finite temperature. For a long time the influence of a back-
ground Polyakov loop on the properties of these topological excitations has been neglected.
Solutions were constructed long ald$ and were studied in detail the semi-classical ap-
proximation[2]. In all these studies the Polyakov loop at spatial infinity (also called the
holonomy) was trivial, i.e., an element of the center of the gauge group. That the influence
of the background Polyakov loop on the topological excitations can be dramatic is partic-
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ularly clear in the confined phase, where on average its trace vanishes. Caloron solutions
in such backgrounds were constructed only relatively recdBt4] and can be seen as
composed of massive monopole constituerith ¥heir magnetic charges adding to zero.

It was observed that the one-loop correction to the action for configurations with a non-
trivial asymptotic value of the Polyakov loop gives rise to an infinite action barrier, which
were therefore considered irrelevd@}. However, the infinity simply arises due to the
integration over the finite energyensity induced by the perturbative fluctuations in the
background of a non-trivial Polyakov lodp]. The proper setting would therefore rather
be to calculate the non-perturbative contribution of calorons (with a given asymptotic value
of the Polyakov loop) to this energy densitg, &as first successfully implemented in su-
persymmetric theorig$], where the perturbative contribution vanishes. It has a minimum
where the trace of the Polyakov loop vanishes, i.e., at maximal non-trivial holonomy.

In a recent study at high temperaturedyere one presumably can trust the semi-
classical approximation, theon-perturbative contributioof these monopole constituents
(also called dyons) was computgd. When added to the perturbative contributibhwith
its minima at center elements, a local minimum develops where the trace of the Polyakov
loop vanishes, deepening further for decreasing temperature. This gives support for a phase
in which the center symmetry, broken in the high temperature phase, is restored and pro-
vides an indication that the monopole constitiseare the relevant degrees of freedom for
the confined phase.

Also lattice studies, both using coolir8] and chiral fermion zero-moddS] as fil-
ters, have now confirmed that monopole constitis do dynamically occur in the confined
phase. A charge 1 caloron is seen for &) consist ofz constituent monopoles. In the
deconfined phase, due to the fact that the average Polyakov loop becomes a center element,
the caloron returns to the form known as the Harrington—Shepard so[afionhe latter
can also be interpreted as consisting of constituent monopoles, howeverwitbf them
being massless.

To be precise, for self-dual configurations in the background of non-trivial holonomy
the masses of constituent monopoles are giveri®p /B, with v; = uj 11— i;. They;
are related to the eigenvalues of the Polyakov loop at spatial infinity,

B
Poo = lim Pexr(/Ao(t,E) dt) =gTexp(27ridiag(u1, W2,y )8 (1)
X—> 00
0

(this expression assumes the periodic gatigé, X) = A, (¢ + B8, X)) whereg is the gauge
rotation used to diagonaliZe,, andg is the period in the imaginary time direction, related
to the inverse temperatuThe eigenvalues eiriu ;) are to be ordered on the circle such
thatuy <pa < <y < g, With i =14 and)_"_; u;i = 0, which guarantees
that the masses add up to®/8, the instanton action per unit (imaginary) time. At higher
topological chargé, the parameter space of widely separated constituent monopoles is
described bytn monopole constituents,of each of the: types of Abelian charges (with
overall charge neutrality).

We established in an earlier pafd0] that well-separated constituents act as point
sources for the so-called far field (that is far removed from any of the cores). When con-
stituents of opposite charge gonstituents of different type) come together, the action
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Fig. 1. In the middle is shown the action density in the plane of the constituents @tfor an SU(2) charge 2
caloron with trP, = 0, in the regime where constituents are not well separated. On a scale enhanced by a factor
1072 are shown the densitities for the two zero-modes,gusither periodic (left) orati-periodic (right) bound-

ary conditions in the time direction. This solution is for the so-called “crossed” configuratiorkwith.997 and

D = 8.753, see Sectiod for more details.

density no longer deviates significantly from that of a standard instanton. Its scale para-
meterp is related to the constituent separatibthroughp?/8 ~ d. Yet, the gauge field

is vastly different, as is seen from the fact that within the confines of the peak there are
locations where two of the eigenvalues of the Polyakov loop coirjtitld 2], thus in some
sense varying over the maximal range available (e.g., for SU(2) froto —12), whereas

for trivial holonomy only one such location is found.

On the other hand, when constituents of equal charge come together typically an ex-
tended core structure is found. This was deduced, in particular for the case of charge 2
calorons, from our ability to analytically determine the zero-mode density (summed over
the two zero-modes implied by the index theorem) in the far field limit, neglecting expo-
nential contributiond.In this limit it forms a singular distribution on a disc bounded by
an ellipse, but approaches two delta functions for well-separated like-charge constituents.
This zero-mode density only sees constituents of a given charge, depending on the bound-
ary condition for the fermions in the imaginary time direction, which can be chosento be a
U(1) phase (containing the physically relevahoice of anti-peddic boundary conditions
for thermal field theory). We will show for SU(2) that their difference for periodic and
anti-periodic boundaryanditions coincidesxactly with the (Abelian) charge distribution
extracted from the gauge field in the same limit, making contact with an old result due to
Hurtubise[13] for the asymptotic behaviour of the monopole Higgs field.

1 This is in some sense equivalent to the high temperature limit, with constituent masses givervhy 8,
such that the range of the exponential contributiomg&h inversely proportional with the temperature.
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We found two particular parametrizations within the SU(2) charge 2 moduli space that
exhibited these extended charge distributions. The first includes as a limit arbitrary charge
2 monopoles. The second of these paramdtdma contains as a limiting case the axially
symmetric configurations constructed for arbitrary charge in Réf.. Deforming away
from the axial configuration the two discs overlap. Describing the intricate behaviour for
the non-Abelian core of these configurations in this region of the parameter space requires
one to find exact solutions, which are presented here. We rely on early work of Nahm
[15] and Panagopould&6] for charge 2 magnetic monopoles, which is simplified to some
extent by our formalism that uses the relation between the Fourier transformation of the
ADHM construction (as relevant for the finite temperature case) and the Nahm transfor-
mation, a crucial ingredient fasur success to find explicit solutiofi3]. Fig. 1 gives a
particular example for the action and zero-mode densities of a charge 2 caloron solution.
The two-dimensional zero-mode basis sen such that each zero-mode only localizes
on one of the constituents of a given charge, showing both the zero-modes with periodic
and anti-periodic boundary conditioimsthe imaginary time direction.

This paper is organized as follows. In Sect®we will outline the construction, intro-
duce the Green's function that is computed through the analogy of an impurity scattering
problem, and summarize the various limits that can be formulated before explicitly solving
for the Green’s function. In Sectiodiwe present the method that allows one to find the
exact solution for the Green'’s function, first for the general case and then applied in more
detail to that of topological charge 2 calorons. Readers only interested in the results could
skip Section®.2 and 3In Sectiond4 we discuss the two classes of configurations in the
moduli space of the charge 2 calorons andvjite plots of the various quantities to illus-
trate the properties of the exact results. In SecEame discuss the relation between the
algebraic tail of the gauge field and the zero-mode density. We end with some discussions.
An Appendix Apresents a new result for the limiting behaviour of the action density.

2. Outline of the construction

There are two steps in the construction of chakgealoron solutions. The first step
involves finding aU (k) gauge fieldﬁﬂ(z), which satisfies the self-duality equation, i.e.,
the Nahm equatiofl5], on a circle parametrized kyy with z introduced through replacing
the original SUg) gauge fieldA, (x) by A, (x) — 2wizég,1,. Although not affecting the
field strength, this changes the holonomy to @®riz8) P, revealing that has period
B~1. The index theorem guarantees the existende zéro-modes¥ (x; z) which satisfy
the Dirac equation, or in the two-component Weyl form

D.W(x;z)= ouDEW (x;2) = 5u(3u +Au(x)— 271iz50ulln)!1/(x; z2)=0 (2)

with 6, = alI = (12, —iT) (r; are the usual Pauli matrices). We may remav&om
the gauge fieldd, (x) by transforming the zero-mode tsz(x) = exp(—2ritz)¥ (x; 2),
which is at the expense of making the zero-mode only periodic up to a phase factor,
W (t + B,X) = exp(—2mizB)W,(t,X). In a similar way we could introducg through
W (x;z,2) =exp2riz-X)¥(x; z), which replaces in Eq2) A, (x) by A, (x) — 27iz,1,,
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wherezg = z. Assuming thek zero-mode® ) (x; z, 7) to be orthonormal one has

R .+ 0 -
Atb(z) = f vz Pz Hat, (3
I

or equivalently (demonstrating as well thaidoes not depend af)
2ab @(p- AT GOy g
AO (Z): lll (x,Z) B_lel (X,Z)dx,
At (z) =2mi / D ) Tw @ (x; 2) dx. (4)

We have shown how&u(z) can alternatively be related to a Fourier transformation of the
ADHM construction of instantond 7], that periodically repeat (up to a gauge rotation with
Poo) in the imaginary time direction, so as to turn an infinite charge instant@? i one

of finite charge and finite tempature. The derivation of this relation will not be repeated
here, see Ref$3,14]for the details.

The connection to the ADHM construction has been useful to simplify the second step
in the construction of the caloron solutions, namely how to reconstruct the original gauge
field when given a solution to the Nahm equatjtB] (which is equivalent to the quadratic
ADHM constraint),

d « ~ ~ 1 R n .
2@+ [Ao(2), Aj ()] + Es,-ke[Ak(zx Ae(2)] =2nmi ;S(Z — wm)pm-  (5)

For convenience of notation we will henceforth use the classical scale invariance to set
B = 1. The singularities in the Nahm equatiopp&ar precisely for those values where
e~27izp_ has one of its eigenvalues equal to 1zat u;. This is where some fermion
field components become massless, i.e., the zero-mode becomes delocalized, whereas for
generic values of it is exponentially localized, which has turned out to be a useful tool to
pinpoint the constituent monopoles.

One could apply the Nahm transformation again, introdu(ﬁl;lgz) — 2mix, 1 (with
xo =t) and find then chiral fermion zero-modes in the background of this gauge field.
The construction is somewhat complicated tluéhe presence of the singularities, whose
structure is determined from the matriggs which appear in the Nahm equation. Not alll
om are independent, e.g., integrating and tracing the Nahm equation yields the conditions,
Yo i T oy = 0. Further constraints are impli¢@l4] by the fact that one may introduce

(as is most easily seen in relation to the ADHM constructiotv)!o-componentspin0r§j
in then representation of SWj, such that

21 Pty = 0089 — 7 - pe2, (6)

where P,, are projections defined through., = Z:;:lezmﬂ"’ Py (S, will appear in
Eq.(8)).



238 F. Bruckmann et al. / Nuclear Physics B 698 (2004) 233-254

2.1. The Green'sfunction

However, with reference to the ADHM construction, there is great benefit in first finding
the solution for the Green’s functiofy (z, /) = gT(z)fx (z,7)8(), where

d? -
{__2+V(z;x)}fx(z,z’)=4ﬂ211k5(2—2/)» @
dz
with
V(@D = 4R +27 Y 8G = ) Sms S =8 Snd (1),

Rj(z:¥)=x; — 2ri) L8(2)A (28" (2), (8)

and S, playing the role of “impurities”. This is formulated in the gauge where first we
transformAp(z) to a constant (diagonal) matrixz2&p, as is always possible in one di-
mension, and then use

g(x) =exp(2mi(o—xolp)z),  Tr&=0 9)

(when Tr&g # 0 it is absorbed in a shift ofp) to transforon — 2mwixol to zero. This is
at the expense of introducing periodicity up to a gauge transformation; althf}l@h’)
is periodic inz andz’ with period 1 (forg = 1), f:(z. z') no longer is?

Given a solution for the Green'’s function, there are straightforward expressions for the
gauge field14] (only involving the Green'’s function evaluated at the “impurity” locations)
and the fermion zero-mod¢k0,18] For the zero-mode density this gives

lj/z(a)(x)Ti’z(b)(x) = _(2”)7283f)?b(z’ 2). (10)

In this paper we will only have need for the Green’s functior at z, which formally can
be expressed as

fe(@2) = —4n%((Mak — Fo) ) 10
z+1

£ =t Pexp/ (V(u?. 55) %")dw, (11)
Z

where the(1, 2) component on the right-hand side bétfirst identity is with respect to the
2 x 2 block matrix structure. In particular thisads to a compact expression for the action
density[3,14]

1 1 :
S =-3tr FZ,(x)= —Eagavz logdefie ™™ (1 — F2.)), (12)

which can be shown to be independent of the choice of

2 Itis in this respect interesting to note thiatl) plays the role of the holonomy associated to the dual Nahm
gauge fieldd , (z).
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The formal expression faf, can be made explicit by a decomposition into the “im-
purity” contributionsT;, atz = u,, and the “propagationH,, = W, (m+1, i4m) between
Wm andp,, 1. FOrz € (wm, wm+1) this gives

Fo =Wz, o) Trn Hyp -1+ - - TZHlTlgT(l)HnTanfl < Ty Hyy Wiy (i, 2)5

(13)
with
_ L 0
Tn = (27'[Sm ]lk> ’
, @ @ )( L@ @) )‘1
Win(z,7) = . 14
& (d%f,;(z) L@ ) \Lfie) @) (14)

The columns of the twé@ x k matricesfnf(z), defined forz € (um, um+1), form the %
solutions of the homogeneous Green’s function equation,

dz?

of which those inf," (z) are exponentially rising and those jfj, (z) are exponentially
falling. This implies[14] f:(z) — exp(E27|X|(z — wm)1x)CE for |¥| — oo, in which

CE = f*(un) can be arbitrary non-singular (to ensure a complete set of solutions) ma-
trices. In Ref.[10] we putC = 1, but here we find it convenient to leave this choice
open. With the “impurity” scattering problem solved, constructing the exact solutions of
the homogeneous Green’s function equation is the last step in finding analytic expressions
for the higher charge calorons.

d? .
(— — A% R?(z; x’)) i(z) =0, (15)

2.2. Limiting cases

Nevertheless, approximate solutions can be derived, either assinsrfgr removed
from any core such that the gauge field has beedbelian (which we called the far field
limit, denoted by a subscript “ff”), or assumiigand the constituents of type (belonging
to themth interval) are well separated from all others, but not necessarily from each other
(which was called the zero-mode limit, denoted by a subscript “zm”). This is because we
found[10] that forz € (wm, um+1) thek zero-modesf/;“)(x) only “see” the constituents
of typem. For u, <z < pum+1 We have

Iz ) =7 (fr @) fry (D) = £ @ ol (ums1) 12, 1)
< (S o) o ms )™ = Z35 o Gom) Sf (ms1) ™42, )
X (S () fo @71 = Z £of () i @7 R @), (16)
up toexponential corrections in the distance to the constituents of type: m, with

-1

Zoy =1k =25, Ru-1(im), 2k =1k — 25, R (),

1
Rn(z) = E(R;:(Z) + R;(Z))v Zm =R, (tm) + R,:,l(llvm) + Sm (17)
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and
27 RE(2) = i(dizfm))f,f(z)l. (18)

In the zero-mode limiZ;}; andZ,  , approachl, up toalgebraic corrections. Neglecting
these contributions as well, e.g., by sending the constituents ofitypem to infinity,
leads to the so-called monopole limit (denoted by a subscript “mon”), further simplifying
the expression for the Green’s function to

MOz, 2) = U (2, ms DUy (s 1 +2) Un (s 2) Ry 1 (2), (19)
with3

Un(z,2) = £,F @ LI = f @ f ()7L (20)

In turn, from Eq.(16) one may derive the far field limit, giving up ®ponential cor-
rections in the distance tl constituents

f;f(/-’bnh Mm):2n2n719 (21)

as is relevant for the expression of the gauge field in this Iji]. For the zero-mode
density (Eq(10)) we may use fof,, < z < um+1 (z Strictly different fromg,,,, tm+1)

Mz ) =7R ). (22)

The discontinuity in this limit,r Ry, (1) # annjl # wRy—1(um), arises due to the
zero-mode developing a massless component whegproachesg.,,. It might seem that
Eqg. (22), combined with Eq(10), is inconsistent with an exponential decay. However, it
turns out thaf10]

Vn () = (4m) 1 Tr(R, 1 (2)) (23)

is independent of in themth interval and harmonic everywhere (hence giving vanishing
zero-mode density) except for some singularities in the cores of the constituents of type
m. Itis this feature, and our ability to compuk, (x) exactly for SU(2) charge 2 calorons,

that allowed us to make statements about the localization of the cores, without solving the
Green'’s function exactly.

In Appendix Awe derive the following new result for the monopole limit of the action
density (Eq.(12)). In the limit wherex and the constituent locations of typeare well
separated from all other constituents, for which both the action and zero-mode densities
are static, we find (witfi/,, defined in Eq(20))

- 1 _
SN = — 0707 log de{Un (m1, 1) Ry (1tm) ] (24)

up toalgebraic corrections. This is a direct generalization for the action density of a single
BPS monopoleS(x) = —%3123j2log[sink(2nvm|}|)/|£|] (located at the origin and with

3 Note thatUy, (z, 7/) satisfies the Green’s function equation with boundary conditigpsz, z) = 0 and

FUn(2.2) ==L Un(z,7) =21 R (2), for 2/ — z.
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mass &2v,,). We emphasize that this result can be used irrespective of the distance be-
tween the constituents of the same typeEq. (24) therefore gives in terms of;=(z)

a closed form expression for the multi-monopole energy density. The same holds, when
using Eq.(19), for the zero-mode density (E¢L0)). For the caloron it involves taking

the limit where all constituents of type’ # m are sent to infinity, which is why this is
called the monopolémit. We recall, that in the far field one should uget] (see also
Appendix A

.1 S e
") = 50707 Y logde( fy (m 1) ff (1om) ™ Ryy (1) ). (25)

m=1

3. Exact results

Finding the exact homogeneous solutions of the Green'’s function equatio(l&g.
closely follows Nahm'’s methofil5] to construct the dual chiral zero-modes. The main
advantage of our approach is that we naetworry about boundary conditions, as this is
solved by the “impurity” scattering formalisfi4]. In the following we restrict ourselves
to a given intervat € (i, m+1) @and work in the gauge Wherf&)(z) — 2mixgl; =0.

Using thatA,L(z) is self-dual, a consequence of the Nahm equation, one easily shows

thatD! D, = —j—; + 472R?(z; ¥), such that it is natural to consider the equation
A P d - =~ \~
Dy (z) =0, DIy (2) = (d_z —ZﬂT'R(Z;X)>1ﬂ(Z)=0~ (26)

It follows that v (z) would be a homogeneous solution of the Green’s function equation,
albeit thaty (z) is a spinor (with a chirality opposite to that for the zero-modes involved
in the Nahm transformation, cf. E(R)). We follow Nahm[15] and use the ansatfz(z) =

(12 + u(X) - 7)|s) ® v(z), whered(z) is ak-dimensional complex vectoi,(X) is a unit
vector that does not depend pand|s) is an arbitrary normalized constant spinor (as long
as it is not annihilated bys + i (X) - 7). It then follows thath(z) = (s|(12 — ii(X) - T)¥ (2)
satisfies Eq(15).

The unit vectoru(x) is found from a complex vectop(x) which squares to 0,
y(X)-y(X) = 0, implying its real and imaginary partsssperpendicular and of equal length
(# 0 as long agi(x) # 0), such that (for ease of notation thelependence of andu will
henceforth be left implicit)

i=iy x5 /(3-5) (27)
is well defined andi x y = —iy, i.e., R&y), Im(y) andu form an orthogonal set of vectors.
Using the ansatz foy (z) and introducing

Y(2)=-5-Rz:X%), U)=-2mi R(zX), (28)

leads to the equations
N d . A
Y (2)d(z) =0, 2@ =U@ik) (29)

for which the first one can only have a solution provideditiey = 0.
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Itis the great beauty of Nahm’s formalism that #i¢t) is a conserved quantity. That is,
L Aj(2) = —3e kel Ac(2), Ae(2)] (the Nahm equatio(5) restricted to an interval and in
the gauge wherdg = 0) impliesdiZ detY (z) = 0 for any choice of andy on a null-cone
in C3 (or rather inC P? since we may rescalg with a non-zero complex factor without
changing the equations). The conserved quantities are generated by the symmetric traceless
monomials My, i, _;,, built from Tr(A;,(z) A;,(z) - - - A;, (z)) with ¢ arbitrary, as one readily
verifies. For example, T4, (z) is constant and defines the center of mass. A natural way
to project on the traceless symmetrionomials is precisely thAroughAintroduciﬁgz cpP?
on a null-cone, forming, yi, - - - i, Miyiy...ic = YirVip - - Yig WA (2)Aip(2) - - - Aj, (2)). It
is interesting to note that;, x;, - - - x;, Miyip...i, IX|7¢is always a spherical harmonic of or-
der¢, used in Ref[10] to show through the multipole expansion of Bf;%(z)) that it is
conserved and harmonic, except for singularities in the core of the constituents.

Once it is established that détz) is independent of for any choice of¢, we can look
for its zeros. Using the null-cone parametrizatios (3(1—¢2), —5(1+¢?),¢), and the
fact that the matrix’ (z) is k-dimensional, we obtain a polynomial equation;iof order
2k and hence there are for genefiexactly Z solutions. It is useful to note that these
solutions come in complex conjugate pairs, where the symnyetsyy* impliesu — —u
and; — —1/¢* (giving ¥* up to a multiple, equivalent t* in C P?).

Given a particular zer@, we may conveniently write a vector in the kernel1ofz)
as[19] 9.(z) = ¢(z)(adj¥ (z))ac for a fixed choice ofc, where ady (z) is the matrix
formed by the minors of (z). The Nahm equation is easily seen to im;#yf’(z) =

[U(z), Y (z)] for any choice ofy on the null-cone. From this one derives fh#zt adj?(z) =
[U(2), adjY (2)]. Substitutingd, (z) = ¢(z)(@dj¥ (z))ac into Eq.(29) gives

dé(2)
dz

(adj¥ (1)), = ¢(2)(adi¥ ) U (2)),,.. (30)

Using the fact thal (z) = —iu;$(2)A;(2)§7(z) — 27u jx;, we get

exp(ii(z) — 2mzii - X)

V @di¥ (2))ac

dp(z) _ _ifadi¥ (2).u;8(2)A; ()8 @}ac
dz 2(adj¥ (2))ac

where the equation fgfi(z) is the same for any value af (it may depend on the value
of ¢). This is useful for studying the asymptotic behaviour of the solution. For laiige
detY (z) = 0 implies thaty - ¥ — 0, such that (cf. Eq27)) ii — £%/|X]. We may use the
symmetryii — —ii to guarantee that there a@reerosy® with the sign ofi? - ¥ negative,
leading to solutions that rise as €2p z|X|). It then follows that the zerosy ?+%) = b

$(2) =

(31)

4 Assume first thaty is such that def +# 0, in which case adj = ¥ ~1dety and therefore<L adjy =
Y40, 717 1det? + f’—ldiz dety = [0, adj¥1+ ¥~ 2Tr(? =1L ¥) = [0, adj?]. Observe that adj is an-
alytic in ¥, such that the result is valid also whgreads to def’ = 0.
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give u®th = _;(® leading to the solutions that decay as @xrz|x|) for large |x].
Hence we may puf (z) = 2P (2) andf,, (z) = 50 (). Defining

it (2) = —(adiy® - R(z; ¥)) iy (2) = —(adiy®* - R(z; D)) . (32)

ac’

which arealgebraicin A;(z) andx;, we find

@ =m0 @), £, =, )¢ (), (33)

whereg(z) contains the exponential dependencies, and thus seemingly all the information
about the cores of the constituents. To make this more precise we coRputg, see

Eq. (18), using that Eq(29) implies (withi®+0 = —ii®) L ¢ (2) = g2 Yy i ® -

Raa(z: ) £ (2), finding that the factorg® (z) drop out

k
RE@) ==Y i Rae(z: D)y () (1= ()7, (34)
b,e=1

This proves thaRi(z) is purely algebraic inij(z) andx;, as areX,, andR,,(z), which
determine the far field limit for the zero-mode density and the gauge field.

One might wonder how, given that thie®) (z) are of the “wrong” chirality in the con-
text of the Nahm transformation, one could use these results to reconstruct the gauge field
for magnetic monopoles where the relationtte ADHM construction is not readily avail-
able. For this one observes that the cqumns@ST)(z) can be used to form ak2x 2k
matrix w(z). Using thatbxw(z) =0, one findsﬁi(w*(z)_l) = 0. Thus the columns of
w'(z)~ give 2 independent solutions faach interval, from which normalizable so-
lutions ¥ (P)(z; ¥) should remain after imposing the appropriate boundary (cq. matching)
conditions. These are then used in Nahm'’s original construction to compute the gauge field

(cf. Eq.(3))

AP (x) = / &P (z; xo, E)T%lf”‘”(z; x0,X)dz, (35)
"
whered (") (z; xo, %) = T (@& P (z; ).

There seems to be considerable advantagsiimuhe Green'’s function (Fourier trans-
formed ADHM) method, since it can solve the ttlaing conditions vthout relying on the
availability of exact solutions for the noriizable dual zero-modes. To go beyond the ap-
proximations discussed in Secti@® and resolve the constituent cores we need to solve
for j1(z). This cannot always be done in closed form, but it is given by an explicit integral
which can be performed numerically when required. For charge 2 monopoles Panagopou-
los [16] was, however, able to find the exact integral. We can use the same ingredients
for the caloron case and explicitly solve for the Green'’s function in the case of charge 2
calorons.

3.1. Analytic expressions for charge 2

For charge 2 the number of invariants associated to the conserved quantities of the
Nahm equation is 8, of which ™ (z) = 4ria; are related to the center of mass for the



244 F. Bruckmann et al. / Nuclear Physics B 698 (2004) 233-254

constituents of given magnetic charge, cogifrom the interval under consideration. As-
suming now thatd ; (z) is traceless, 5 invariants remain, given in terms of the symmetric
traceless tensor

1 1
M;; = —§<Tr(A (DAj(2) - 300 Tr(Ak(z))> (36)

Three of its parameters are associated to the rot&iaich diagonalizes the 83 matrix,
M = Rdiag(c1, c2, c3)R', whereR is fixed by requiring> < ¢1 < c¢3. Thec; add to zero
and can be expressed in terms of the so-called séglaijd shapel) parameters,

1- 2k? 2_ 2
, _p? k ’ _p2 1+k _
12 12 12
The Nahm equation for the case of charge 2 can be solved completely in terms of Jacobi
elliptic functions[20,21], which was summarized in RgfL0]

c1=D? (37)

AR - N . 1
§()Aj(z;a, R, h, D, K& (2) =2mia;12 + ElDijfb(D(Z —z20)h'oh,  (38)
wherer is a global gauge parameter and

k’ k' snc(z) drk(z)

, = , = kK'=v1-k?
Cng(z) @)= cne(2) fa@) = n(z)’

1) =

(39)

with® sne(z) = sin(p(2)), cne(z) = cogp(z)) and dm(z) = /1 — k2srf(z) the standard

Jacobi elliptic functions. This does not yet address the matchim@(yf) on the different
intervals, where some difference between the monopole and caloron application appears.
For the caloron, apart from the axially symmetric solutions constructed in[R&f.we
found two sets of non-trivial solutions that interpolate between overlapping and well-
separated constituents. It is for these classes of solutions that we will resolve the cores,
when constituents overlap and the rlorearity plays an important role.

The next step in the construction is finding the zef@$ detY (z). One has

A 1
detY(z) = Yiyj (xixj — 5223“' — (ZJT)_ZMI'/'), (40)

where we usedi? = 0. Substituting a parametrization for this null-conedrP?, e.g.,

y = ( 1-2¢?,— 2(1 + ¢2),¢), gives a 4th order polynomial. However, for finding
the 4 solutions we find it in this case more convenient to first diagonalize the matrix
xXixj— 3%28;; — (2m)"2M;; = O Oj. Introducingy’ = O'§, the equation for the zeros
reduces tay))?r1 + (¥5)?r2 + (¥5)?r3 = 0, which in addition to the null-cone condition,
D%+ (v5)2 + (y5)? = 0, is now easily solved by

_'(“)/ (\/)\2—)\3, (— 1)a+l\/)t3 —)\1»’\/)\2_)‘1)

YO = (W), a=12 (41)

5 y(z) implicitly defined by the elliptic integral of the first kingl= f(‘)"(Z) 1/v/1—Kk2sir? 6 do.
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where we fixed (for generi€) the diagonalizing rotatioi® by orderingi; < Az < Az.
Using Eq.(27)we find fori’ = O'u

G@r _ <( 1)4 VAiz—i1 VA2 — A3 0) plat2dr — gy o _ 1 2 (42)
Viz=i1 Via—=r ) 7 ’

One easily checks that? andi®# give rise to, respectively, the exponentially rising
and falling solutions.

Itis also instructive to give the explicit expressions for the matrmé$z) in Eq.(32)
(choosinge = 2). We note that for a Z 2 matrix adjy = (TrY)1, — ¥, and without loss
in generalitf we takezg =0, d = 0,R=13, D=1andh=15in Eq.(38), such that

rh+(z)=_—< WA — iy f2(2) Yf)fl(z)—iyéz)fZ(Z)>
4 \ 4% 5 — (l)fs(Z) Anx 7@ — (Z)fs(z)
e L <y1>fl<z>—iy§3>fz<z> WA - lyz)fz(z)>

4 \4x5 -39 -y f30)  4nx- 3D — 3P fa(2)

We checked that Eq23), V(¥) = (27) 1 Tr(RT (z) + R~ (z)) %, evaluated using E¢34)
is independent of and agrees with the result derived in R@0].
We next address solving E(1), which for charge 2 can be written’as

(43)

di(z) szuzy]5“° —2mi(X - y)ul AaC(Z)
dz 27 (X - y)89¢ — iy; AaC(Z)

(44)

For the same choice of parameters in @8)as abovezg=0,a = 0,R =13, D=1and
h = 12, this gives (witha = 1 andc = 2)

diu(z) _ (- )-;)ulfl(Z) —iuafa(e) (45)

dz Y1f1(2) = iy2f2(2)
Although the dependence anis complicated, the integral overturns out to be man-
ageable (as was observed before in the context of charge 2 monopoles, although we here
choose not to express the solution in terms of theta funcfitéi$. To solve the equation
we first rewrite the right-hand side of Eg5) using the fact thai x y = —i y (cf. Eq.(27)),

ut fi(z) —iuzf2(z)  (uzy1+iy2) fi(z) —i(uzy2 —iy1) f2(2)

yif1(2) —iyafa(z) y3(y1f1(2) — iy2f2(2))
_ f1<z>fz<z)y§+4iy1yz<k’)2 ug
y3(1672(X - )2 — Y5 f3(z))  ¥3
In the last identity we used thaf = 0, f2(z) — f2(z) = 1 — k? = (k)2 and the fact that
detY (z) = 0 implies(y1 f1(2) — iy2f2(2) V11(2) +iv2f2(2)) = 1672(F - 5)% — y2 f2(2).

6 we may changeg, a, , R and D by, respectively, translations, (gajgetations, and suitable rescalings.
7 Using that3{A;, A }yju; = 315 Tr(A; Aj)yjuj = —M;; yju 1y, sinceii - § =0.
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With d%fg,(z) = f1(2) f2(z) we can now integrate E45),

o oooug 1o (ArR-Y+ f3()y3) | signz)(K)? yiyz
o=z 5152+ gloa( e R+ RS o
47y - 3)?
1) = M f5 22)0n) = (L m) + 12, nz(’”ycizy), (46)
3

up to an irrelevant constant, whefg (s, n) is the elliptic integral of the third kirft
)

dt
Ik (s, n) = . 47
(s ) Of(l-m?)\/(l— k212)(1— 12) *7)

We now combine these ingredients to give in terms tfe exact form for the homoge-
neous solution of the Green’s function equation,

@dj¥ (2))a2

Vv @diY (2))12

94 (2) = $(2)(adjY (2)) ,, = exp(ji(z) — 2 zii - ¥) (48)

or putting in all the relevant expressions

y1y2(K')?

N Z N N
Vy(z) =exp|li—|27(y x + —
© p(’ya[ X3t e G

(12l + M (f5 (2),n) — M1, n))D

4n3 -5 — (—1)“y3f3(z)>l/4
47X -y + (=13 f3(z)

(49)
Substitutingy = 7 = 0’57, with 3% as defined in Eq(41) gives /() = 1" (2)
andf,, (z) = o+ (z), and thereby the Green'’s function, once we specify the parameters
involved in the solutions to the Nahm equation.

x (4m) Y2 (= y1 f1(2) — (=D)%iyafa(2) " 2(

4. Action and zero-mode density plots

The discontinuities in&(z) at z = u1 andz = po implied by the Nahm equation,
Eq. (5), impose constraints which are (like the quadratic ADHM constraint) in general
difficult to solve. Work is in progress to describe the full parameter space for SU(2) and
charge 2, but in Re{10] we did find two non-trivial parametrizations for which we illus-
trate here in a number of figures how the full caloron solutions look like, using the exact
Green'’s function as constructed in the previous section. Taking advantage of the possibility

8 More commonly the elliptic integral of the third kind is defined @$n; ¢, k) = Ik (sing, n). Note that
1(z) can alternatively be written eﬁf"’(‘"‘) A—12/n)~ 112 —k?)~Y24:2 — 1)=Y24;, from which it follows that
L1) = (A= nf2@)Nf12) f2)) ™ 4 f3(2) = signz) (1 — nf2(2)) 7L, using £2(2) — 1= £2(2), f2() —
k2= f2(z) and £ f3(2) = f1(2) f2().
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Fig. 2. An example to illustrate the location of the dsegularities (light and dark shaded according to magnetic
charge) for a rectangular (left) and crosggdht) configuration. The latter is shownat= —7/2, ford = 7 /32
andd = /4 (k =0.962, D = 3.894 andy = —m/4). The curves indicate the would-be constituent locations at
fixedd and#@, varyinga from —x (to which the arrows point) to 0. Far= —x and 0 the discs collapse to lines
(k = 1) with no singularities remaining, except at the endpoints.

to work with arbitrary arithmetic precision the programme Maple has been used for these
calculations. The configurations are formulated in terms of the two intepvalges, 2]
andz € [u2, 1+ u1], each associated with two cditsent monopoles of equal magnetic
charge, but opposite in sign from one interval to the next. Apart from a shift and (gauge)
orientation, the configuration is described by a shdgeafid scale D) parameter (see
Section3.1), for simplicity assumed to be the same on both intervals. We also take all
constituents to be of equal mass,, = % (H2=—p1= %), most relevant for the confined
phase with tfP,, = 0.

The two periodic and two anti-periodic chl fermion zero-modes each have support
on oppositely charged constituents ($ég. 1) and in the far field limit it was found that
the zero-mode density (summed over the two zero-modes implied by the index theorem)
is described by a disc singularity, bournday an ellipse with semi-major axi® /47 and
eccentricity(1—Kk’)/(1+k’) (wherek’ = +/1 — k2). This revealed that the core of a cluster
of like-charged constituents is in general extended, unless the individual constituents are
well separated. The far field only describes the (algebraic) Abelian component of the gauge
field and to resolve the structure of the core we need to determine the full non-Abelian
structure.

For the first parametrization (called “rectangular”) the two discs are parallel and sepa-
rated in height by a distanek The configuration is charaterized by the two extremal points
along the major axis of the disc, also callgould-be constituent locatiorfs

39 = (o, %(—1)"%1, (—1)/ (471)_1D>, 2nd = sz(%D) (50)

up to an overall shiftand orientation (the definitionfafz), which involvesk, can be found
in Eq.(39)). A typical example is shown iRig. Z(left). Apart fromk and D, the parameters

9 In their immediate neighbourhood the action density iimal; they are the constituent locations in the
point-like limit, k — 1.
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Fig. 3. Shown is the energy density (middle) fo = 0.25, k = 0.570 andD = 6.915, in the monopole limit
d — oo and in thex—z plane through one of the discs for the rectangular configurationFigee(left). On a
scale enhanced by a factar Zare shown the densities for the two monopole zero-modes (left and right).

that enter Eq(38) for the mth interval area = (0, %(—l)md, 0), R =13, h =1, and
0= %(1+ (=D™). In all cases discussed here we have alsaput 0. One verifies that
the discontinuities oﬁj(z) atz = u,, are given by Zip;, with appropriately choseg,
(cf. Eq.(6)), as discussed in detail in R¢10].

For the second parametrization (called “crossed”) the two discs are coplanar and inter-
sect, sed-ig. 2(right) for a typical example. Their ralive orientations can vary between
perpendicular and coinciding (for whidhis forced to 1). Here we choose for the parame-
ters in EQ.(38) 4 andR to be non-trivial (isospin) rotations around theaxis with angles
(—1)"9, respectively(—1)" ¢, anda = (0, 0, —%(—1)’" d cosx), whereago andép are as
in the rectangular case. The would-be constitleeations are now given (up to an overall
shift and orientation) by

5 = <<—1)f (@) D sing. 0, (-1 (4m) LD cosy - 5(-1)"a COS“)’ oy

where+¢ conveniently gives the orientatiorf each of the two discs with respect to the
z-axis. The anglex originates from the definition af,, which through Eq(6) determines

the discontinuity ofAj(z). To ensure the proper matching, the following three equations
need to be satisfield 0]

Dsin@ j:go)[fg(%D) + f1<%D>:| = 87d (14 sina),

1 .
Df2<ZD> + 8rd sina =0, (52)

which determinep, k and D for givenc, 6 andd. Fig. 2illustrates that for these crossed
configurations the two discs always overlap, unlike for the rectangular case. This formed
an important motivation for the present study, so as to determine in how far the overlapping
discs would affect the behaviour in the core.
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Fig. 4. In the middle is shown the action density in the plane of the constituents: 8tfor an SU(2) charge

2 caloron with tfP, = 0 in the crossed configuration &fg. 2 hence withk = 0.962 andD = 3.894. On a
scale enhanced by a factor#%are shown the densities for the two zero-modes, using either periodic (left) or
anti-periodic (right) boundaryanditions in the time direction.

We will illustrate, using the exact formalism, how the action and zero-mode densities for
these solutions behave. For the rectangular case we are mostly interested in the monopole
limit, d — oo. For finited, the density separates in two contributions, where each in the
limit d — oo is exactly the density for a charge 2 monopole with the same valueaiod
D. Note that in the limitd — oo the matching conditions foﬁj(z) “decouple” the inter-
vals, turning into pole conditions at= 1,2, as is appropriate for multi-monopolf0].

We do recover from this the known results for the charge 2 monofizi?¢dike the dough-

nut structure fok = 0, corresponding to two superimposed monopoles. The interest in the
monopole limit comes from the fact that thero-mode densities for multi-monopoles had
not been studied in detail befof23]. In Fig. 3 we give the densities fdk = 0.570 and

D = 6.915, which is intermediate between the doughnut and well-separated monopole
configurations. On the other hand, #bismall (compared t@ = 1) the configuration will

look like two non-dissociated calorons, and in particular is no longer static. Vibhes

mains much bigger tha, forcingk — 1, these behave as two well-separated charge 1
instantons. Otherwise, whdh is comparable ta, one finds overlapping instantofs].

An example for the crossed configuration wikh= 0.997 andD = 8.753 was already
shown inFig. 1 In this caseD is large enough for the like-charge constituents to be
separated, as is particularly clear from the zero-modes, which are essentially no longer
overlapping. But two nearest neighbour (oppositely) charged constituents still show appre-
ciable overlap. The distance between these nearest neighbo}gﬂ;\ﬁ/n =0.985. As
this is comparable t¢ = 1 we would expect the configuration to depend on time. Indeed,
at the maxima of the action density its value af8x 1672 atr = 0 is reduced by almost
50% atr = 0.5. At the center of mass, where the action dencity is much lower, there is still
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a time dependence. However, far from all cores the field becomes*&aticreasingD
further (which will pushk closer to 1) the configuration qekly turns into well separated
spherically symmetric static BPS monopoles.

More interesting is to consider the case with smalletike D = 3.894 anck = 0.962,
for which the disc singularities were illustratedrig. 2 The corresponding densities are
shown inFig. 4. We see that the constituents are now so close that they form a doughnut, but
we stress this is different from thatatic monopole doughnut, which h&s= 0. Since the
oppositely charged constituents now are as close as 0.438, which is considerably smaller
than the time extent, the solution will have a strong time dependence. Wisedecreased
even further, it will turn into a charge 2 instanton localized in both space and time.

5. Higgsfield asymptotics

In this section we make some comments on the far field limit of the gauge field. As we
discussed before, the gauge field far rentbfrem any core becomes Abelian (as well as
static). The Abelian subgroup is the one that leaves the holonomy invariant, in the periodic
gauge equivalent to leaving the constant asymptotic value of the adjoint HiggsAfield
invariant. For definiteness, let us consider the case of SU(2)iwitl2, 8 = 1 andPy =
exp2rin - 7) (i.e.,u2 = —p1 = |@|). Up to exponential corrections we have

1
Al @) =27id -7 - Sid- T (), (53)

where we can express(x) in terms of the far field limit of the Green’s function at the
impurities[14]

&) =7 17 Tr( (2, 12)82) ] 710 Tr( AT (o, o)) (54)

Using the twistor description of magnetic monopoles Hurtufi8¢was able to explic-
itly compute the asymptotic Higgs fieldfthe SU(2) magnetic monopole long ago. The
function he found for this algebraic tail amazingly agrees exactly Witlix), Eq. (23),
which was introduced to describe the caloron zero-mode densityefiotes the interval
and hence the type of constituents to which torresponding zero-modes would localize
[10]). As mentioned before, from our multi-caloron results one can recover the multi-
monopole results by sending the constituent monopoles with the “unwanted” magnetic
charge to infinity, cf. Eq(24).

Although this tends to be cumbersome to shawy) in the far field can be written
as®1(X) — @2(X), whered,, (¥) is the contribution coming from the type constituent
monopoles and the difference in sign is due to the sign change in the magnetic charge. This
is simply because the field is Abelian in the far field and linear superposition preserves the
self-duality. Hence@,, (x) = 2nV,,(X), such that for the SU(2) caloron

D (F) = 271 (X) — 27 V(3. (55)

10 For any SU#) and topological chargk the far field limit is staticprovided all constituent monopoles have
a non-vanishing mass.
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We checked that this result indeed holds for the solutions discussed in Séctéoan
when the two types of monopole structures are not well separated. This relation trivially
holds for the axially symmetric solutions that were introduced in Ref], where® (x)

was explicitly shown to factorize in a sum of point charge contributions, compatible with
what was found in Ref[10] for the zero-mode densities. Therefore, in the far field limit
(i.e., for the algebraic part) the singularity structure in the zero-mode density agaetty

with the Abelian charge distribution, as given bS/db()?). Such a relation is at the heart

of using chiral fermion zero-modes as a filter to isolate the underlying topological lumps
from rough lattice Monte Carlo configuratiof$y.

6. Discussions

In this paper we have analyzed the higher charge caloron solutions and showed how
to obtain exact results by suitably combining techniques developed in the context of the
Nahm transformation and the ADHM formalism. The aim of these studies has been to es-
tablish that SU{) caloron solutions of chargecan be described in terms bt monopole
constituents, and that these can be viewed as independent constituents. A natural way to
get an ensemble would be to consider approximate superpositiagnshairge 1 calorons,
but this would lead to an unwanted memory effect, with constituents remembering from
which caloron they originatefd 4]. Our studies, within the context of self-dual configura-
tions, have shown nevertheless that the constituents have an independent identity, with the
only requirement that the net magnetic anéelctilic charge of the configuration vanishes
(each of then types of constituents should occur withe same number). A recent lattice
study[25], using the technique of over-improvem§g2], fully confirms this picture.

Itis therefore reasonable to consider the constituents as the independent building blocks
for constructing an ensemble of monopole ddnents, something that was not ques-
tioned in Ref.[7], but like for the instanton liquid27] forms an essential assumption
in a semi-classical study. Clearly the expectation is that semi-classical methods no longer
work in the confined regime, at least for the part of the parameter space that corresponds
to well-separated constituents, that is typically associated to instantons with a large scale
parameter. It is not unlikely that the density of these constituents at low temperatures is so
high that they form a coherent background and as such will no longer easily be recognized
as lumps. With high quark densities leading to deconfinement, it may perhaps be that a high
constituent monopole densityill lead to confinemenf28], although for now we have to
leave this as a speculation.

Instantons that overlap get deformed and depending on the relative gauge orientation
tend to “repel”, i.e., inspecting the action density distribution they do not get closer than
a certain distancf4]. When deconstructing instantons in monopole constituents, inter-
estingly only like-charge constituents will@l this effect, manifeing itself through the
extended core structure. For unlike charges, from the point of view of the Abelian field, the
configuration behaves as with linear superposition. If as a consequence of this all Abelian
charge is annihilated, it disappears through forming a small instanton (localized in space
and time), which in the limit of zero sizeedcribes the boundary of the moduli-space. The
interaction between constituertsopposite duality is more complicat8l,29].
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In conclusion, calorons with non-trivial holonomy have revealed a rich structure, in-
corporating traditional instanton physics tkallowing for gauge fields that inherit some
essential features associated to a confinagkground not present in the traditional formu-
lations. The fact that the underlying cditisents are monopoles opens the way to describe
the confining aspects of the theory in terms of these degrees of freedom. Much work re-
mains to be done when it comes to understanding the dynamics, but we hope to have
convinced the reader that a consistent picture is developing that holds considerable promise
for the future.
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Appendix A

In this appendix we derive the zero-mode limit for the action density, which assumes
that the distance of and the constituents of type to all constituents of type:’ # m is
large, but wher& and the constituent locations of typemay otherwise be arbitrary.

As in Ref.[10] we takez = u,, + 0 for computingF, and use that we can write
deK]]-Zk _fum) = de‘(ﬂ-Zk — LK), wherek = Fn-10m-1--- @1§T(1)E1 On - Omi2Fmt1
andL = 0,1 F,; 0,,, with

0, = Lk Li lT Tk Tk
"N 2Ry () =27 Ry () ) "\ 2T Ry () =27 R, () )

_( FoF ) ff ) ™1 0 )
d ’”‘( 0 i G fr () ) (A1)

We note thek hasno remaining dependence on the constituent locations oftypé/rit-
ing LK =LK + LK, with

e=(5r Ko) k=(g, 4 )
~ (Liy O - (0 L,
p=(b 0) 2=(8 E). w2

we find detly — LK) =detK)detK 1 — L — LKK1).
We next use

-1 -1
s (Kt —Ki1K4- st 0 0
K _< 5 . Y V= (A.3)
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and note that in the zero-mode limit;}, K 1K, K- K} and(K ~1)__ are expo-
nentially small (cf. Ref[10, Appendix A), such that

detlie ™0 (1 — LK)) = dele 2" 0K ;) detL4). (A.4)
With the definition ofZ we now find
1 _ _ -
Liy= ZRmil(Mm+l)(Rm+l(Hm+l) + Sm+l) Un (R,:,l(,uvm) + Sm)» (A.5)
where

Un = Z 1 fol (mad) o ) " R () 2,1
— 2 Fon (1) Fy () " R ) 2,
ZE =1 £ (Ryy () + ) T RE (),
ZE =1+ RE () (R o) + Sn) ™5 (A.6)

andU,, containsall contributions due to the constituent locations of typeup to expo-
nential corrections in the distance of thesand of x, to the other constituents. Hence
logdetie " *o(1y — LK)) splits into the sum of two contributions, log det,) and
logdef3 (R, _;(1um) + Sw)eZ ™K RY (w1 (R, 1 (hmt1) + Sws1)], Where the
last term only depends on the constituent locations of #igpe: m whose contribution
will decay inversely proportional to the fourth power of their distance. Allowingafge-
braic decay (or in the monopole limit, sending all constituents of types m to infinity)
such thatin additiorﬁnj;+l = é'mi = 1, one thus finds Eq24).

A simple way to derive the result for the far field limit in E€5) is by noting that
in this caseall f, (wm+1)f, (um)~ 1 are exponentially small andf;,, can be approx-
imated by diagF, ", 0), with F,/* = £ (im+1) £, (um) ™t This therefore acts as a
projection on the+-+ component and is thus seen to lead to(@et 01y, — LK)) =
dete=27 08T () FH+ o+ FFT o). Using the fact thaftl0] 0,5 = 1R,  (wm) i
gives the required result.
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