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This talk discusses two topological features in non-abelian gauge theories, related by the notion of abelian 
projection and the Hopf invariant. Minimising the energy of the non-linear sigma mode1 with a Skyrme-like 
term (the Faddeev-Niemi model), can be identified with a non-linear maximal abelian gauge fixing of the SU(2) 
gauge vacua with a winding number equal to the Hopf invariant. In the context of abelian projection the 

Hopf invariant can also be associated to a monopole world line, through the Taubes winding, measuring its 
contribution to topological charge. Calorons with non-trivial holonomy provide an explicit realisation. We 

discuss the identification of its constituent monopoles through degenerate eigenvalues of the Polyakov loop (the 
singularities or defects of the abelian projection). It alloys us to study the correlation between the defect locations 
and the explicit constituent monopole structure, through a specific SU(3) example. 

1. Introduction 

Abelian projection was introduced by ‘t Hooft 
in an attempt, through a suitable choice of gauge, 
to decompose a non-abelian gauge field in its 

neutral and charged components [l]. In its sim- 
plest form it involves choosing an observable X(z) 

that transforms under gauge transformations as 
g+(z)X(z)g(z), which can be used to diagonalise 
X(Z). This can be done in a smooth way when 

none of the eigenvalues coincide. The remaining 
gauge freedom is U(l)T, where T is the rank of 
the gauge group. These are associated with the 
T neutral gauge bosons in this gauge. Singulari- 
ties occur when two (or more) eigenvalues coin- 
cide, and these can in three dimensions be shown 

to give rise to (generically) point-like singularities 
representing magnetic monopoles, as defined with 
respect to the remnant abelian gauge group. 

A smoother, but non-local, abelian gauge fixing 
can be introduced [l] by taking an abelian field 

as a background (e.g. for SU(2) the component 
proportional to 73 = diag(1, -l)), and imposing 
the background gauge condition on the charged 
component of the gauge field. This can be formu- 
lated by minimising s IA”,(z)12 along the gauge 
orbit. 

Inspired by the abelian projection, Faddeev 
and Niemi attempted to identify the field Z(z) 

(here of unit length, IY?(z)~ = 1) in an O(3) non- 
linear sigma model with the local colour direc- 

tion for SU(2) gauge theory. The hope was that 
the static knotted solutions constructed numer- 

ically [2] in the model originally introduced by 
Faddeev [3], were possibly related to glueballs [4]. 

A difficulty is that one would not expect dynamics 
for a quantity that is associated with the colour 
direction, due to gauge invariance. F’urthermore, 
the O(3) symmetry is in general spontaneously 
broken for non-linear sigma models in 3+1 di- 
mensions. The associated Goldstone bosons are 
unwanted in non-abelian gauge theories without 
matter. We will see that nevertheless the n’ field 
can be identified with an SU(2) gauge field, al- 
beit with zero field strength. Under this identifi- 
cation we have (~,G(z))~ = 41A”,(z)12, giving a 
hint that minimising the O(3) energy functional 

can be interpreted [5] in terms of maximal abelian 
gauge fixing, as will be discussed in section 2. 

The static knotted solutions, as maps n’(Z) from 

S3 (compactified R3) to S2, are classified by the 
Hopf invariant. The pre-image of a generic value 
of n’ traces out a loop in R3 (i.e. the collection 
of points 2, where Z(Z) = 6). The linking num- 
ber of any two of such loops is equal to this Hopf 
invariant. This also coincides with the winding 
number of the gauge function g(Z), such that 
n”(Z)Ta = g(Z)C’)73g+(Z), with 7, the Pauli matri- 
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ces. The associated SU(2) gauge field with zero 
field strength is A(Z) = gt(Z)dg(l). 

Such a relation between Hopf invariant and 

topological charge can also occur for monopoles. 
A basic monopole is characterised by a hedge- 
hog, with the Higgs field defining the colour di- 
rection, pointing out radially. If we gauge rotate 
the monopole (for the spherically symmetric case, 
equivalent to a real rotation) while moving along 
its worldline, a particular point of the hedge- 
hog will trace out a loop whose linking with the 
monopole worldline is an invariant. This was used 
by Taubes to make from monopole fields, config- 
urations with non-zero topological charge [6]. In 
his formulation a monopole-antimonopole pair is 
created and separated to a finite distance. Kept 
at this separation one of them is rotated around 

the axis connecting the two. After this is com- 
pleted they are brought together and made to an- 
nihilate. The time is considered to be euclidean 

and the rotation introduces a “twist” in the field 
that prevents the four dimensional configuration 
from decaying to A = 0. The obstruction is pre- 

cisely the topological charge, whose value is equal 
to the net number of rotations. 

This process can just as well be described in 
terms of a closed monopole loop (in the same way 
that the Wilson loop is associated with the cre- 
ation, propagation and annihilation of a heavy 
quark-antiquark pair), see Fig. 1. The identifi- 
cation with the Hopf invariant should be under- 
stood in the following sense: the orientation of 

the monopole is described by SU(2)/U(l)-S2 at 
each point on the monopole loop (Sl), describing 
a twisted S2 bundle over S’, e.g. making the to- 
tal space into an S3 for one_ full “frame” rotation. 
This is the Hopf fibration, although we have in- 
terchanged fibre and base space as compared to 
the usual formulation. 

At finite temperature A0 plays the role of the 
Higgs field and the calorons (periodic instan- 
tons) provide an explicit example of this Taubes 
winding, when it has a non-trivial value of the 
Polyakov loop at infinity. This Polyakov loop 
is independent of the directions at infinity, be- 
cause the finite action of the caloron forces the 
field strength to vanish at infinity. In this case 
the caloron splits in (n for SU(n)) constituent 

monopoles, which are the basic spherically sym- 
metric BPS monopoles. Of these, n - 1 are time 

independent, whereas the time dependence of the 
other exactly coincides with the rotation (at a 

uniform rate) [7,8] of the Taubes winding. In 
terms of the abelian projection and the introduc- 
tion of a composite Higgs field the relation of the 
Hopf invariant with twisted monopole loops has 
been extensively studied by Jahn [9]. 

In section 3 we will use the Polyakov loop as the 
observable X(Z) to be diagonalised, a version of 
abelian projection that is non-local in time. For 
the application to the calorons this is not a prob- 
lem, since at high temperature the action density 
is static. The static action density is not in con- 
flict with the Taubes winding, as this is associated 
to a gauge rotation. Defects occur when eigenval- 
ues coincide. Their location is not an artifact of 

the gauge, since eigenvalues are gauge invariant. 
But another choice of X will give generically de- 
fects at other locations. In the light of this there 
seems no reason to expect the defects to always 
be associated to physical lumps. We study in how 

far this is true in the case where two of the con- 
stituents for the SU(3) caloron are brought close 
together [lo]. 

In section 4 we end with some conclusions con- 
cerning the role of topology in non-abelian gauge 
theories. 

Figure 1. Topological charge constructed from 
oppositely charged monopoles by rotating one of 
them. For a closed monopole line, the embedding 
of the unbroken subgroup makes a full rotation. 
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2. The Faddeev-Niemi model gauge invariance, obvious from the following re- 

lation to the n field: 
The model is defined in terms of a three-vector 

r?(z) of fixed (here chosen unit) length. To al- 
low for non-trivial static solutions a Skyrme-like 
higher-order term is added 131, through the in- 
troduction of a composite gauge field strength 

FPV(z) = id(z) . (8,6(z) A &T~(x)). A useful 
identity is F&(z) = i(a,d(z) A &S(Z))~, which 
follows from the fact that $?X(z) A &d(z) = 
2FPy (z)c(z). Its proportionality to s(z) follows 
from the fact that the latter is perpendicular to 
a,?L(z) (since G(z) is a unit three-vector). The 
action is given up to an overall factor by 

#(x) = XP+(2)7VJ(x). (3) 

The abelian gauge invariance of the CP, model 

leads to a composite gauge field 

A,(x) = -i’Dt(x)ap! (4) 

and one verifies that indeed F(x) = dA(x). Use- 
ful identities for these computations are the com- 
pleteness relation 6ij6kl + T;I-& = 26il6jk and 

~E~~~T$TL~ = r;jbil - r%;djk. The energy, Eq. (2), 

becomes 

s=/d% (a,??(x) * Piq2z) - ;&“(z)Py2)) ) (1) 
E = d3x J ( 41Diq(Z)c’)12 - i$(Z)) 7 (5) 

brought to this simple form by a suitable rescal- 
ing of 2. Finite energy requires Z(Z) to ap- 
proach a constant vector at spatial infinity. In 
this way static configurations are classified by 

the topological maps from S3 into S2, charac- 
terised by the Hopf invariant. The two-form 

F(Z) = Z(Z) . (dn’(f!) A dn’(iJ)) implicitly defines 
an abelian gauge field one-form A(Z) through 

F(Z) = dA(Z), in terms of which the Hopf in- 
variant is given by Q = & sA(Z) A F(Z). Re- 
markably, the energy is bounded by a fractional 
power of this Hopf invariant [11,12]. 

with D, =a, -iA, the covariant derivative. 

Next we make use of the fact that any com- 
plex two-component vector of unit length is in 

one to one relation to an SU(2) group element. 

Alternatively we can write g(x) = g(x)@c. For 

convenience we choose @A = (1, 0)) such that 

E = 
s ( 

d3x (6’i6(x))2 + fF;(x)) > c1Q13i4, (2) 

with c = 16=233/g. This gives a rough bound, 
which can be improved on [13] (by roughly a fac- 
tor 2). Extensive numerical studies [14,15] have 

gone up to Q = 8, with energies indeed following 
the fractional power of Q. 

n,(z) = itr (sg+(xbdd~)) . (6) 

We introduce JP(z) q ir,Ji(z) q g+(z)aPg(x), 

which can be interpreted as the components of 
an SU(2) gauge connection with vanishing cur- 
vature, that is G(s) = dJ(x) + J(x) A J(x) = 0, 
where J(z) z JK(x)dxp. A simple calculation 
shows that A,(z) = J,“(x) and a,!l!+(z)PXP(z) = 
Ji(x)JL(z). The zero non-abelian field strength 
leads to FPY(x) = 2(5;(2)5,2(2)-Ji(x)Jz(x)), or 

2.1. Reformulations 

We reformulate the non-linear sigma model in 
two steps, both well known [16,17]. The first 
involves CPI fields. Its main advantage is that 
the abelian gauge field appearing in the Hopf in- 
variant, no longer needs to be defined implicitly. 
To be specific, one introduces a complex two- 
component field 9(z), also having unit length. 
A further phase is removed by the local abelian 

F(z) = dJ3(x) = 2J1(z) A J2(x), (7) 

in terms of J”(z) 3 Ji(z)dz,. This implies that 

A(Z) A F(Z) = 2J3(3) A J’(2) A J2(iZ), and sub- 
stituting J(x) = g+(x)dg(z) one finds that the 

Hopf invariant is exactly equal [14] to the wind- 
ing number of the gauge function g(Z), 

&A(Z) A F(z) = &tr(gt(~)dg(4)3. (8) 

Using that J has zero curvature, we can of course 
also relate the Hopf invariant to the non-abelian 
Chern-Simons form, giving &A(Z) A F(Z) = 

-&tr[J(2) A(dJ(?) + $J(z?) AJ(Z))] EC’S(J). 
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2.2. The gauge fixing interpretation 
The natural question to ask now, is what the 

interpretation of the energy functional becomes 
in terms of the non-abelian gauge field 

E =pz (4 (J;(if)c’+2 (e,oJp(?‘)Jf(Z))2) ,(9) 

where the index Q and /3 run only over 1 and 
2. With the absence of the neutral component, 
J;(z), the SU(2)/U(l) formulation is evident. It 
defines a positive definite functional on the gauge 
orbit, and its minimum can thus be seen as a par- 
ticular (non-linear) maximal abelian gauge fixing, 

leaving the abelian subgroup generated by 5 un- 
fixed [1,18]. As the reparametrisation is mathe- 
matically equivalent, we are entitled to interpret 
the minima of the energy functional in the sector 

with a given value of Q as gauge fixed pure gauge 
(i.e. curvature free, or flat) connections in a sec- 
tor with gauge field winding number Q. There- 
fore, there is a gauge fixing in terms of which the 

gauge vacua with different winding number can 
be characterised by inequivalent knots. We thus 
conclude that instantons “knit”, interpolating be- 

tween different types of “knots”. 
The relation between n’ and flat SU(2) gauge 

fields can also be understood from geometric 
quantisation on SU(2)/U(l) N S2 and chiral mod- 
els, but the relation to gauge fixing was only 
noted recently [5]. Finding the absolute minimum 
of a gauge fixing functional is known to be a hard 
problem, seemingly reflected in the difficulty of 

finding the knots with the lowest energy for a 
given value of Q, as clearly illustrated in Fig. 2 of 

Ref. [15] 

2.3. Implications 
Much work has been invested in interpreting 

this model as an effective low-energy representa- 
tion of SU(2) gauge theory [4,19,20]. The quality 
of this approximation is being investigating by 
inverse Monte Carlo techniques [21]. Amongst 
other things, these numerical results have re- 
ported the presence of the unwanted massless 
Goldstone bosons, if one does not include terms 
that explicitly break the O(3) symmetry. Also a 
perturbative renormalisation group study showed 
there are difficulties with the restricted formula- 

tion of the model, as an effective description of 

SU(2) gauge theory [22]. As we will argue, this 
difficulty seems to be related to the fact that one 
expands around a background that is actually un- 
stable. 

The conventional starting point in these studies 
is based on the decomposition [23] 

zXP((z) =a$(%) A n-(z) + C,(z)??(z) + ti&),(lO) 

where C, describes an abelian gauge field and W; 
are the charged components of the field, with re- 
spect to n”(z)~,. One attempts to integrate out 
both W; and, unlike in abelian projection, C,. 
In perturbation theory this amounts to a back- 
ground field calculation. For later use we con- 
sider the one parameter family of backgrounds 
AZ(z) =qa,Z(z) A G(z). For q= 1 6(z) is covari- 

antly constant, i.e. 8,7?(z) + A,(z) A Z(z) = 0, 

which remains true when adding C,ii to the back- 
ground. It ensures that the abelian gauge field 
transforms properly under gauge transformations 

after abelian projection [23]. To address the is- 
sue of perturbative stability, we compute the field 

strength for general q, 

I$/(Z) = q(q - 2)d,n’(Z) A d,??(z), (II) 

which is non-zero for q = 1. The energy of this 
background field is proportional to q2(2 - q)2 
and actually has a local maximum at q = 1, 
and hence is unstable. On the other hand, the 
energy of the background vanishes not only for 
q = 0 (the trivial background), but also for q = 2. 
The latter corresponds to the flat connection J 
that has topological charge equal to Q, given 
by the integral of the non-abelian Chern-Simons 
form over space. Resealing the flat connection 
J with q/2 one easily finds its value for any q, 
S CS(qJ(Z)/2) = q2(3 - q)Q/4. For q = 1, this 
relation between the Hopf invariant and the non- 
abelian Chern-Simons form can also be found in 
Ref. [19]. We note that the integral gives half the 
Hopf invariant for q = 1, thus in some sense this 
background is “half-way” between two vacua. 

For q = 2 the (flat) background is useful in 
separating the gauge field in its different topolog- 
ical sectors, since small fluctuations parametrised 
by C, and Wi do not change the value of the 
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winding number. With what we could call the 

Faddeev-Niemi gauge fixing, such a separation 
in different topological sectors is now possible in 
localised form, without having to appeal to the 

asymptotics of the gauge field. This may lead to 
new tools and insights to deal with the non-trivial 
topology of non-abelian gauge theories. 

3. The W(3) Caloron 

We now turn our attention to finite tempera- 
ture instantons (calorons) with a Polyakov loop, 

P(Z) = Pexp(J/As(Z, t)dt) in the periodic gauge 

A,(t,z) = Ap((t + P,% non-trivial at spatial in- 

finity (specifying the holonomy). It implies the 
spontaneous breakdown of gauge symmetry. For 
a charge one SU(n) caloron, their are n con- 

stituent monopoles [8]. Locations of constituents 
monopoles can be identified through: 
l Points where two eigenvalues of the Polyakov 

loop coincide, which is where the U’+‘(l) sym- 
metry is partially restored to SU(2) x U’+‘(l). 
l The centers of mass of the (spherical) lumps. 
l The Dirac monopoles (or rather dyons, due to 
self-duality) as the sources of the abelian field 

lines, extrapolated back to the cores. 
If well separated and localised, all these coin- 

cide [7,24]. This is no longer the case when two 
constituents come close together, as shown for 
SU(2) in Ref. [25], and for SU(3) in Ref. [lo]. 

The locations of the constituent monopoles 
may be chosen at will, but their masses are fixed 
by the eigenvalues of P, zlimlpl,, P(Z). These 
eigenvalues can be ordered by a constant gauge 
transformation VV, 

kV~P,W, = PL =exp[2ni diag(pi, . . . , pn)], 

p1 5 ... <pn 5Pn+l=l+pl, (12) 

with Cz=, p,,, = 0. Using the classical scale in- 

variance to put the extent of the euclidean time 
direction to one, ,B = 1, the masses of the con- 
stituent monopoles are now given by 8n2vi, where 
Ui 3 Pi+1 - Pi. 

Similarly we can bring P(Z) to the diagonal 
form, with eigenvalues ordered on the circle, by a 
local gauge function, P(Z) = W(Z)Ps(Z)c’)Wt(Z). 
We note that W(Z) (unique up to a residual 
abelian gauge rotation) and PO(Z) will be smooth, 

except where two (or more) eigenvalues coincide. 

The ordering shows there are n different types of 

singularities (called defects [26]), for each of the 
neighbouring eigenvalues to coincide. The first 

n -1 are associated with the basic monopoles (as 
part of the inequivalent SU(2) subgroups related 
to the generators of the Cartan subgroup). The 
nth defect arises when the first and the last eigen- 
value (still neighbours on the circle) coincide. Its 

magnetic charge ensures charge neutrality of the 
caloron, and it carries the Taubes winding sup- 
porting the non-zero topological charge [7,8,27]. 

The topological charge can be reduced to sur- 
face integrals near the singularities with the use of 
tr(PtdP)3 = d 3tr((PJAwPc + 2PJdPo) A Aw) = 
d Str(AwA(2Aw logP~+P~AwP~)), where Aw E 
WtdW. If one assumes all defects are pointlike, 
this can be used to show that for each of the n 

types the (net) number of defects has to equal 
the topological charge, the type being selected by 
the branch of the logarithm (associated with the 

n elements in the center) [26]. This is the generic 
situation, but in special cases defects may form a 
submanifold, as we will find for a global embed- 

ding of the SU(2) caloron in SU(3). 

3.1. Coinciding constituents 

One might expect defects to merge when con- 
stituent monopoles do. The resulting triple de- 
generacy of eigenvalues for SU(3) implies that 
the Polyakov loop takes on a value in the cen- 
ter. Yet this can be shown not to occur for the 
SU(3) caloron with unequal masses. We there- 
fore seem to have (at least) one more defect than 
the number of constituents, when two merging 

constituents will manifest themselves as one con- 

stituent. To study what happens in this case we 
first recall the simple formula for the SU(n) ac- 

tion density [8] 

with &, the center of mass location of the mth 
constituent monopole. We defined r, z ]Z- ji,,, 1, 
cm E cosh(27rV,rm), sm E sinh(2nv,r,), as well 
as y’+i _ Y;, r,+l G rl. We are interested in the 
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case where the problem of two coinciding con- 

stituents in SU(n) is mapped to the SU(n- 1) 
caloron. For this we restrict to the case where 
& = y’m+i for some m, which for SU(3) is al- 

ways the case when two constituents coincide. 
Since now r, = r,+i, one easily verifies that 

A m+i A,= A,+1 [vm+i + V, +vm+i], describing a 
single constituent monopole (with properly com- 
bined mass), reducing Eq. (13) to the SU(n- 1) 
action density, with n - 1 constituents. 

Figure 2. Action densities for SU(3) calorons on 

equal logarithmic scales, cut off at ie-‘, for p = 1 
in the plane defined by the constituent locations 

ii1 = C-2, -27% & = (0,2,0), y’3 = (2, -1,0) and 

t=O, using (pi,p~,/~s) = (-17,-2,19)/60. On 
the right we moved the first constituent to the 
location of the second. 

3.2. Tracing the defects 
We will study in detail a generic example 

in SU(3), with (/.~i,pz,/.~s) = (-17, -2,19)/60. 
Fig. 2 shows the action density both for non- 
coinciding constituents and when moving the first 

constituent to the location of the second. We 
denote by z’, the position associated with the 
mth constituent, where two eigenvalues of the 

Polyakov loop coincide (the defect locations). 
Numerically it was established that [24], in the 
gauge where P, = PL (see Eq. (12)), 

Pi=P(&)=diag( e--?r2fi3, eeTzp3, pip3 
1, 

&=P(&)=diag( e27rifi~ e-5rifi, 
, e 

Ps=P(z’3)=diag(-e-“ifi:, , 

-=y, (14) 
e2+p2 _e-rripa 

1. 

This is for any choice of holonomy and constituent 
locations (with the proviso they are well sepa- 

rated, i.e. their cores do not overlap, in which 

case to a good approximation z’, = y’m). Now 

we take $1 = (O,O, 10 + d), & = (O,O, 10-d) and 
& = (O,O, -10). The limit of coinciding con- 

stituents is achieved by d + 0. In very good ap- 
proximation, as long as the first two constituents 
remain well separated from the third constituent 

(carrying the Taubes winding), P3 will be con- 
stant in d and the SU(3) gauge field [24] of the 
first two constituents will be constant in time (in 
the periodic gauge). Thus P(&) = exp(As(Z’,)) 
for m = 1,2. This simplifies the calculation of 
the Polyakov loop considerably. 

When the cores of the two approaching con- 
stituents start to overlap, Pi and PZ are no longer 
diagonal (mixing the lower 2x2 components). At 
d = 0 they are diagonal again, but PZ will be 
no longer in the fundamental Weyl chamber (the 

“logarithm” of the Cartan subgroup). A Weyl 
reflection maps it back, while for d # 0 a more 

general gauge rotation back to the Cartan sub- 
group is required to do so, see Fig. 3. For d +O, 
each Pm (and Pm) falls on the dashed line, defin- 

ing the reduction to SU(2). 

Figure 3. The fundamental Weyl chamber with 
the positions of Pm indicated at d = 2, 1, .2, .l, 
.05, .04, .03, .02, .Ol, .005, .OOl, .0005, and (large 
dots) 0. The perpendiculars point to P, (center), 
and emanate from the values of Pm for well sep- 
arated constituents. The dashed line shows the 
SU(2) embedding for d = 0. (u E exp(27ri/3) 1) 
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To illustrate this more clearly, we give the ex- 

pressions for Pm (which we believe to hold for any 
non-degenerate choice of the pi) when d -+ 0: 

$l=P(&)=diag( e2r’112, e2nG-‘2, ,5--4Xil‘2), 

%=P(z2)=diag( epnip2, e2ni“2, ewKip2), (15) 

@s=P(zs)=diag( _e-rifiZ, e2XiP2, _e--nil‘z). 

These can be factorised as p:, = psQm, where 
& describes an overall U(1) factor. In terms of 
Qi=diag(e3Xip2,1,e-3niJ‘2), Qz=diag(l,l,l)=l 
and Qs = diag(-1, 1, -1) the SU(2) embedding 
in SU(3) becomes obvious. It leads for Q2 to the 

trivial and for Qs to the non-trivial element of the 
center of SU(2) (appropriate for the latter, car- 
rying the Taubes winding). On the other hand, 
Qi corresponds to diag(e3kip2, e-3?ripz), which for 
the SU(2) caloron is not related to coinciding 

eigenvalues. For d + 0, Fig. 4 shows that Zi gets 
“stuck” at a finite distance (0.131419) from Z;. 

10.1 

t d 

Figure 4. The defect locations Zr and .&, along 
the z-axis, for MEV~-Y~ =O.l as a function of d. 

3.3. Spurious defects 
The SU(2) embedding determines the caloron 

solution for d=O, with constituent locations &’ = 

& and y’2’ = y’s, and masses z+’ = ul + v2 = ~3 -pl 
and ~2’ = ~3. The spurious nature of the defect is 
obvious by calculating its location purely in terms 
of this SU(2) caloron, demanding the SU(2) 
Polyakov loop to equal diag(e3mip2, e-3Kip2). For 

this we can use the analytic expression [25] of the 

SU(2) Polyakov loop along the z-axis. The loca- 
tion of the spurious defect, Z’r = (0, 0, z), is found 
by solving 3~~2 =7rvi-+&acosh[;tr(dhdi)]. For 
our example, z = 10.131419 indeed verifies this 

equation. 
Fig. 5 gives the spurious location as a function 

of the mass difference of the two coinciding con- 
stituents. We find that only when this difference 

vanishes, the defects merge to form a triple degen- 
eracy. Using the relation 3~2 = ~1 -VZ, the case of 
equal masses for the coinciding constituents cor- 

responds to ~2 = 0. For unequal masses the defect 
is always spurious, but it tends to stay within 
reach of the non-abelian core of the coinciding 
constituent monopoles, (n~i)-l N 0.53, except 
when the mass difference approaches its extremal 

values *v; = %( 1 -vs). At these extremal values 

one of the SU(3) constituents becomes massless 

and delocalised, which we excluded for d # 0. 
Actually, the limit d +O is singular due to the 

global decomposition into SU(2) x U(1) at d = 0. 
Gauge rotations U in the global SU(2) subgroup 
do not affect P2, and therefore any UQlUf gives 
rise to the same accidental degeneracy. In partic- 

ular solving -3?Tp2 = XV; - ;d,acosh[4tr(d~d~)] 

(corresponding to the Weyl reflection Qr 4 Qi) 
yields z = 9.868757 for ~2 = -l/30 (isolated point 

in Fig. 4). Indeed, U E SU(2)/U(l) traces out a 
(nearly spherical) shell where two eigenvalues of 
P coincide (note that for ~2 = 0 this shell collapse 
to a single point, z = 10). A perturbation tends 
to remove this accidental degeneracy. 

II 
20 

z 
15 

-7-=-=q 
( ,M o 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 

Figure 5. The defect locations Zi and Z2, along 
the z-axis, as a function of M c 14 -VI for d + 0. 
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4. Conclusions 

Topology is important for the non-perturbative 
understanding of non-abelian gauge theories, be- 
cause it forces one to take serious that the config- 
uration space is non-trivial [28]. That this has a 
role to play in the quantum theory can be easily 
understood from the difference between quantisa- 
tion on the line versus the circle. 

Marek Karliner, Martin Liischer, Holger Gies, 
Parameswaran Nair and Joaquin Sanchez Guillen 

are gratefully acknowledged, as well as hospital- 
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