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Calorons in the confined phase for SU(n) gauge theory, having a non-trivial Polyakov loop, “dissolve” in n 
monopole constituents for large enough instanton scale parameters. We discuss recent results for t.hese caloron 
solutions and their fermion zero-modes, as well as the implications for lattice studies and comment on the possible 
influence of the constituent monopoles on the instanton size distribution. 

1. Introduction 2. Progress at higher charge 

Calorons for SU(n), instantons at finite tem- 
perature, have n monopoles as constituents [l-3], 
each with a mass &r’v,//?, where urn, ~-~+l-p,, 
defined in terms of the Polyakov loop at spatial 
infinity (the so-called holonomy) through a global 
gauge rotation g and its (ordered) eigenvalues, 

Pm = gexp[2~idiag(pl,. . . ,pn)lst, (1) 

The analytic formalism can be generalized to 
higher charge calorons (Q > 1)) although explicit 
results are harder to get at. In this section we re- 
port on work by three of us (FB, DN and PvB) [8]. 

Periodically repeating Q instantons (up to a 
colour rotation with Fm) within each time-layer 
t E [p, p + 11, using p as a Fourier index, maps the 
appropriate ADHM data [9] to a self-dual U(Q) 
gauge field A,(z). This is defined on a circle 
parameterized by z E [0, 11, with 12. well-defined 
singularities at z = pi, in accordance with the 
Nahm transformation [l]. When A(Z) is constant 
for z E [pj,,q+l] (always true for Q = l), its 
eigenvalues are directly related to the constituent 
locations, all of the same type with a mass 87r2vj. 

m=l 

Using the classical scale invariance we may set 
/3 = 1 throughout. The charge one SU(n) action 
density has a simple form [3], 

TrFiv(x) =a:@ log [ttr(A, . . . A,) - cos(27rt)J , 

AmE f_ 
rm 

‘0” (2) 

with r, = /&jj’ml the center of mass radius of the 
mth constituent monopole, cm 2 cosh(2rv,r,): 
sm z sinh( 27rv,r,), r,+l E r1 and &+I = yi. 

The fermion zero-mode is localized [4,5] on the 
mth constituent monopole, if ~1, < z < pL,+1 
specifies its boundary condition ql,(t + p, 2) = 
exp(-2niz)P,@,(t, 5) in the so-called algebraic 
gauge, where A,(t f ,O,Z) = P,A,(t, ?)P;l. 
“Cycling” through the values of z gives a distinct 
signature, see e.g. Fig. 1, through which one can 
identify well-dissociated calorons, as observed for 
SU(2) [6] with, and for SU(3) [7] without cooling. 

*Presented by the last author. 

The motivation for these studies has been to 
understand to which degree the monopole con- 
stituents can be seen (outside their non-abelian 
cores) as independent point-like Dirac monopoles. 

Figure 1. Logarithm of zero-mode densities with 
z = 4/5,1/2,1/5 (from left to right) for an SU(3) 
caloron with (~1, ~2, ~3) = (-17, -2,19)/60. 
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Approximate superpositions of calorons, e.g. us- 
ing the sum ansatz [lo]; suffer from subtle effects 
that lead to finite energy remnants of the Dirac 
string as illustrated in Fig. 2. Fortunately this 
is an artefact of the approximation, as can be 
seen from a class of exact axially symmetric so- 
lutions, for which A(Z) is piecewise constant. It 
does; however, make model building on the basis 
of these constituent monopoles intricate. 

In the high temperature limit the non-abelian 
cores of the monopoles shrink to zero size. As 
long as z # pj the mass of the fermions becomes 
infinite in this limit and the zero-modes are en- 
tirely localized to the non-abelian cores of the 
constituent monopoles, cmp. Fig. 2. The fermion 
density, summed over all zero-modes, is given by 
C, j9(“)(rc; z)[” = -(2~r-~~~Trf~(z, ~5); where 
!$(z, z’) is the Green’s function of the ADHM- 
Nahm construction and can be computed using 
impurity scattering methods. Many simplifica- 
tions occur in the high temperature limit, where 
the density for pm < z < h,+r can be written as 
-L$V,(Z). This function can therefore be used to 
trace the possible extended nature of constituent 
monopole sources (independence of z implies it 
is a highly non-trivial conserved quantity of the 
Nahm equations). For SU(2) and &=2 we found 

where y’(q) = (J1--i;” cos cp, 0, sin cp), up to an 
arbitrary coordinate shift and rotation, in terms 

Figure 2. Logarithm of action densities for the 
sum ansatz (top-left), high temperature limit 
and exact (right) solutions of an SU(2) charge 2 
caloron. Bottom-left corner shows one of the two 
anti-periodic (.z = 4) zero-mode densities. 

of a scale ZJ and shape parameter k to character- 
ize arbitrary SU(2) charge 2 solutions of A(Z). 

This represents an extended structure with the 
core restricted to a disk bounded by an ellipse 
with minor axes 2D&?? and major axes 20. 
But for large V this can be shown to approach two 
point-like monopoles (k -+ 1) separated by 2’0. 
Axially symmetric solutions are always point-like 
(k= l), with unlike-charges alternating. 

3. Truly observing constituents? 

We return to interpreting the recent lattice 
data of Ref. [7], based on using the fermion zero- 
modes as a filter, restricting to Q=l by insisting 
there is only one “exact” zero-mode. In the con- 
fined phase a reasonable fraction of configurations 
was found with one lump in the zero-mode den- 
sity, but at different locations as a function of 
Z. This fitted well the expected behaviour of a 
charge one SU(3) caloron, see Fig. 1. There will 
typically be near zero-modes as well, revealing the 
presence of Q anti- and Q-l-1 instantons. To rule 
out that the zero-mode could be hopping between 
the &t-l instantons, rather than between the con- 
stituent monopoles of a single caloron, two of us 
(MGP and PvB) computed the mixing of zero- 
modes as a function of z. 

For simplicity we consider SU(2), adding a 
charge 1 anti-instanton and a charge 2 instanton 
in the algebraic gauge with (the same) arbitrary 
holonomy, i.e. using the sum ansatz [lo]. In iso- 
lation the charge 2 instanton has two exact zero- 
modes, and only one of them can survive: the one 
associated to the zero (left) eigenvector of the 2x1 
overlap matrix [lo] ( using Weyl fermions) 

where gp = (12, i?) and the equation of motion 
for the zero-modes was used. We now assume 
that the charge 2 instanton is made up of two suf- 
ficiently separated instantons, in which case Ik$)l 
to a good approximation is equal to the charge 1 
zero-mode associated with the ith instanton. 

The exact form of the SU(2) Q=l zero-mode 
with pa = exp(27riwTs) has been given before [4]. 
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The anti-instanton and its zero-mode are ob- 
tained by time reversal, which changes the period- 
icity to PL exp(27riz), to be corrected by a gauge 
rotation irz and changing the sign of Z. This en- 
sures the overlap integral is periodic. In terms of 
the scale parameter p (determining the distance 
7rp2/,0 between the constituents), arbitrary loca- 
tion a, and orientation R, = $tr(UriUtrj) (with 
UE SU(2) the associated spin rotation), we find 

@A(Z) = - Qp/i43:(K(5)+ K*(-z)), (5) 

K(z) = $1;) (x (I); Z)~~~)a,d,~~A)~(~)(z’~‘; 21, 

where, Z(I,A) = (t - af’A), R(‘,A) (z- z(IJ))) and 

$‘(I) (z; z) = 4;) (x) (y;g) f%44, 

+(A)@; z, = $tA,(d (2 1 ;z) f$“‘(“J, z). (6) 

Explicit expressions for $(x) and fZ(wi z) can be 
found elsewhere [3-51. 

For generic values of the parameters the over- 
lap is complex and to go through zero (to maxi- 
mize localization) requires fine-tuning of two pa- 
rameters. We will assume here that, for each of 
the two instantons and the anti-instanton, both 
constituent monopoles are approximately at the 
same location (np2/p small). Typically then, if 
one instanton is sufficiently further away from the 
anti-instanton their overlap will be exponentially 
small and the zero mode will localize on that in- 
stanton. This happens generically for any z ex- 
cept for two small intervals (proportional to p-*) 
around z = fw where the (anti-)instanton zero 
mode becomes delocalized and the overlap is not 
guaranteed to be small. One could, in principle, 
observe in these two intervals a significant mix- 
ing with the zero mode of the second instanton. 
Notice however that, except for trivial holonomy 
where the two intervals merge into one (at z = 0 
or $), this effect leads to double the expected 
number of hoppings. Therefore it could only pos- 
sibly mimic the behaviour of a single caloron with 
trivial holonomy. We can then conclude that the 
full signature of a single SU(2) caloron with non- 
trivial holonomy is unlikely to be emulated by the 
effect of hopping between two instantons, and we 
expect the same to hold for SU(3). 

4. Discussions 

Cooling studies at a low temperature, rather 
than just below the deconfinement temperature, 
have been reported as well [6]. Constituents at 
non-trivial holonomy could still be identified by 
points where two eigenvalues of the Polyakov loop 
coincide, but they revealed no individual lumps. 
This may explain why before no constituents were 
found. It is also interesting to point out that for 
p > p the scale parameter plays an entirely dif- 
ferent role and the measure for integration over 
the moduli space should be formulated in terms 
of constituent monopoles of fixed size (at fixed 
temperature). This should remove the infrared 
divergence of the scale integration, although it is 
unlikely a semiclassical picture can be used here. 
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