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UNDERSTANDING SU(2) LATTICE ARTIFACTS IN INTERMEDIATE VOLUMES

Pierre van BAAL

Institute for Theoretical Physics, P.O. Box 80.006, NL-3508 TA Utrecht, The Netherlands

We will discuss the results of the semi-analytic calculation of the low-lying spectrum for pure SU(2) gauge
theory in an intermediate volume with periodic boundary conditions as obtained from the Wilson lattice
action . The results are for an arbitrary number of lattice sites in the three spatial directions and allows us to
show what the influence of lattice artifacts on the glueball spectrum amounts to. The close agreement found
between these semi-analytic calculations and the full lattice Monte Carlo simulations on lattices of spatial
sizes 43 through 103 indirectly proves the accuracy of an adiabatic-type approximation previously employed
in continuum calculations . The continuum results are actually reproduced as the scaling limit (the number
of lattice sites in each direction to infinity) of these lattice results. These results also unambiguously
demonstrate the almost "preposterous" statement that at the 10% level a 43 lattice is able to describe
continuum physics in an intermediate volume .

1. INTRODUCTION

Progress in physics would probably be much
slower if we wouldn't occasionally be blind for some-
thing which seems obvious. Expecting that a lattice
of 4 to 6 sites in the space directions can give a
good approximation of the low-lying spectrum for
pure SU(2) gauge theories in volumes up to a size
of 5 scalar glueball correlation lengths is maybe such
an example, since in that case the correlation length
is of the order of the cutoff and one should have
anticipated large lattice artifacts. The accuracy of
the Monte Carlo data for the intermediate volume
calculationsl , 2 has improved to such an extent that
one started to see systematic deviations between
the lattice and the continuum results, especially in
the smaller volume range, where the continuum ap-
proach is supposedly under contro13. Nevertheless,
the latter needs what was phrased as an adiabatic
approximation, whose quality could not be quanti-
fied in all rigour. Thus the aim of the study of the
lattice artifacts was twofold: understanding why the
lattice artifacts are so small and testing the validity
of this approximation .

It is maybe useful to recall here the motivation
and the aim of the finite volume expansion which
originated in work by 't Hooft4 and Lüscher5. The
finite volume serves both as an infrared cutoff (never-
theless retaining the zero-momentum modes) and as
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a control parameter for changing the strength of the
interaction . Such a control parameter is lacking in an
infinite volume, due to the classical scale invariance
of the theory. In a finite volume, the renormalisa-
tion of the coupling constant relates the size of the
volume to the strength of the interactions through
the use of the renormalisation group, and asymp-
totic freedom allows us to do perturbation theory in
sufficiently small volumes. In this perturbatioe ex-
pansion, obviously zero-momentum modes will dom-
inate, but it is crucial that they remain interacting
to lowest non-trivial order6.

The aim of the finite volume expansion is to try
to incorporate increasingly more complicated dynam-
ical effects, which become important for larger vol-
umes (i .e . stronger interactions) . What essentially
happens is that the wave functional starts to spread
out over configuration space and sees more of the
non-trivial topology of this configuration space and
of the structure of the potential energy. Incorporat-
ing one of these effects, which can be largely (but not
completely) formulated within the zero-momentum
sector, allows one to understand the origin of the en-
ergy of electric flux and the low-lying glueball masses
in volumes of up to 0.7 fermi (5 times the correlation
length of the scalar glueball). The next and hope-
fully final step would be to incorporate effects that
are responsible for the energy of the theta-vacua .
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That this seems to become relevant only at volumes

bigger than 0.7 fermi is indicated by the volume de-
pendence of the topological susceptibility7.

In the remainder we discuss a few of the ingredi-
ents of the analytic derivation of the effective Hamil-

tonian for the zero-momentum modes. By taking
the Wilson lattice action as our starting point, we

will include all the lattice artifacts. For more details
and results we refer to$ and a forthcoming publica-
tion . For more on the finite volume expansion see
Michael's review in this volume.

2. THE LATTICE EFFECTIVE ACTION
As in the continuum we can calculate the ef-

fective action for the zero-momentum modes by in-
tegrating out the non-zero momentum modes. On
the lattice they arise in the following expansion:

Us,m+,a = exp(ic .(t)/N,,,) exp(iq,(x)/N,,) . The
constraint of zero-momentum is most easily im-
plemented on the lattice using a Fourier expan-
sion q,(.n)(x -I- m) = exp(27rin�/N,,)q,(,n)(x), with
n� restricted to the Brillouin-zone (i .e . n� =
0,1, . - -,N,,- 1) and n :A 0. The path integral rep-
resents the trace of the transfer-matrix to the power
No and the logarithm of this transfer-matrix is what
we want to extract, giving us the lattice effective
Hamiltonian for the zero-momentum modes. For the
ease of the calculations we let the time direction ex-
tend to infinity .

First one derives the effective action, which de-
pends only on the zero-momentum modes c; (choos-
ing the gauge co = 0) and which still has time dis
crete . This, in principle, does not differ from what
is done in the continuum calculation, except that for
the lattice action the coefficients in the expansion in
powers of the quantum fields contain arbitrary pow-
ers of the background field c. For convenience we
restrict ourselves here to a cub,,c spatial lattice, for
which the result can be written as:

Se!!(c) = (1 +goal(N))Sk + Sp

	

(2.1

+E{Vl(c+ (t) ; N) + VT(ci(t) ; N)} + . . .
t

where Sk + Sp is the tree-level action, split in
a kinetic and potential part . Explicitly, in terms
of the background-field link variables U(°)(t) =
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exp(ic;(t)/N;) :

Sk =
2
9
3
~Tr(1- Ui(*)(t + 1)U(°)t(t))

	

(2.2)
o

SP =

	

3

9ETo - U(°)(t)U!°)(t)U~°)t(t)U(°)t(t))
o t,ij

whereas the vacuum-valley and transverse potentials
(resp. Vl and VT) are given by :

3
+ E -y3(N)ri rj' + E -ts(N)r;rj' +7s(N) JÎ rZ + . .

c>,i

	

+#9

	

=1

VT(c ; N) =N{~ 4
îx2(N)Fj +F a3(N)rkF,ï

i,j

	

ijk

+ 1: a4(N)r?F,? + as(N)det2c+ . . .} (2 .4)

with F; _ -EabdCjb cjd and r; = 2Tr(c;).

(2 .3)

3.

	

RELATING AL AND Amrs
In all cases except for 51 and 612, the continuum

values are the respective scaling limits (N -+ oo)
of a;(N) and -y;(N) . We also note that in lowest
order in 1/N the tree-level potential term is given
by F,jl(4Ng;) . Hence, to one-loop order â1,2(N)
occur in the combination 1192, +î11,2(N), which will
therefore determine the renormalisation of the cou-
pling constant, necessary due to the logarithmic di-
vergence of â1,2 . We define

al,2(N) = 61,2(N) + 121r2
In(N)

	

(3.1)

where â1,2(N) has a finite scaling limit as can be
seen in table 1. As usual, one absorbs the divergence
in the renormalised coupling constant

1/gR = 1/gô - 11 ln(N)/127r 2

	

(3.2)

It is worthwhile to point out that it is not neces-
sary to introduce the lattice spacing a, as long as we
are only interested in scale invariant quantities, like
x = mN, wherem is some mass in lattice units . The
scaling limit is determined by keeping gR fixed and
letting N go to infinity. At fixed coupling we want



Table 1: The constants 64(N) and î52(N) forvarious
cubic lattices of Nsites. The scaling limit (N -+ oo)
can be used to related AL to AMS, using the values
of a1 = 2.1810429 x 10-2 and a2 = 7.5714590 x
10-3 , which were computed with the dimensional
regularisation in the minimal subtraction scheme .

which implies the relation

the physical size L = aN to remain fixed, which
means that a scales as 1/N, and therefore depends
on the bare coupling constant go as dictated by the
renormalisation group.

One defines AL to be the constant of integra-
tion for the renormalisation group, which to one-loop
order amounts to 1/g; = -11In(aAL)/127r 2. This
allows us to relate AL to AMS in the finite volume ex-
pansion, because the scaling limit of the lattice effec-
tive action should be the same as the effective action
derived in the continuum with dimensional regular-
isation in the minimal subtraction scheme . This is
the case when

9R +
a1,2(~) _ `121r2

In(LAMS) + 01,2 (3.3)

AL/AMS = exp(12a2(&1,2(00) - a1,2)/11}

	

(3.4)

From table 1 we see that AL/AMs = 0.1339958(2),
and it is important that the two ways of calculating
this ratio give the same result within the error (due
to extrapolating N -+ oo). Important is also that
this ratio agrees with the previous determination of
this ratio9 based on an infinite volume calculation
(reading the literature one has to remember that
Dashen&Gross corrected in their published paper an
error detected by Weisz, but they were left over with
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an error in the calculation with the Pauli-Villars reg-
ulator which, however, did not affect AL/AMs).

4. FROM TRANSFER MATRIX TO EFFECTIVE
HAMILTONIAN

We will now return to a finite number of lattice
sites, since here we are particularly interested in the
size of lattice artifacts. As remarked before, the ef
fective action will still have time discrete and we can
therefore interpret the effective theory in terms of
a transfer matrix for a one-point lattice. To derive
this transfer matrix T = exp(-7{), we have to con-
vert the path integral representation to an operator
representation . As usual one introduces the position
and momentum eigenstates (here for SU(2) - S3,

which can be viewed as R4 with the constraint that
the radial distance is fixed and the radial momen-
tum is zero). Then one writes the path integral in
terms of products of matrix elements ofthe evolution
operator, however, without taking the time step in-
finitesimal . Nevertheless, provided the action splits
in purely kinetic (i?) and potential (V(s)) terms,
the relevant matrix element ran easily be seen to
be given by < pie-Ke-VI2 >. Here K is the ki-
netic operator, for which lp > is an eigenstate (af-
ter imposing the constraints which reduce R4 to S3
this becomes the covariant Laplacian on S3). We
therefore deduce that the partition function Z can
be written as Z = Tr({e-Ke-v}N°), which by def-
inition is also given by Z = Tr(TN°) = Tr(e'N°").
One therefore finds :

7i = In[exp(-K/2) exp(-V) exp(-K/2)]

	

(4.1)

which is, however, only unique modulo unitary trans-
formations . It is amusing to check this formula
in the case of a harmonic oscillator (V = jw2X2'

K = -zd2/dX2), for which both the finite time step
path integral and eq . (4 .1) can be calculated exactly
(the resulting spectrum is again harmonic, but with a
frequency 2asinh(w/2)) . The effective Hamiltonian
is now obtained by expanding eq . (4.1) to fifth or-
der in K and V (which are both of order 1/N), and
converting the kinetic term K for S3, by a restating
of the wave function, to the kinetic term of R3.

_N &2
2 -0.1520446897 -0.1489339448
4 -0.1706212159 -0.1631776638
8 -0.1671141882 -0.1741754180
16 -0.1654821183 -0.1778324170
32 -0.1650271986 -0.1787866263
64 -0 .1649090195 -0.1790274104
128 -0.1648789899 -0.1790877426
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5. COMPARISON WITH MONTE CARLO DATA
One now has the effective Hamiltonian in pre-

cisely the same form as for the continuum, but
with quite a few additional terms that are impor-
tant for finite N and which therefore carry the in-
formation of the lattice artifacts . The spectrum,
including the non-perturbative effects, encoded in
the boundary conditions for the wave functions, is
determined as in the continuum3 . In figure 1 we
compare our results for the mass ratio

MAi/ME+

as a function of z = mE+N at N = 4, 6 and oo
with the Monte Carlo data obtainel using "fuzzed"
operators2, which are efficient in removing spurious
couplings to higher lying statesl .

6. CONCLUSION
From the excellent agreement between the

Monte Carlo and the semi-analytic results we can say,
with much more confidence than before that N = 4
is not too far from N = oo, but it seems somewhat
accidental (due to cancellations of different types of
corrections) . We are now also confident that the
approximations made in the analytic calculations are
accurate . Finally it is gratifying to see that the pure
gauge Monte Carlo calculations can achieve the ac-

ZE"

N=4
N=6
N=00

Figure 1: Comparison of the Monte Carlo results on 43 x N,, (dots) and on 63 x No (squares) lattices2 with the
semi-analytic results for the mass ratio

mAi
/mE+ as a function of z = mE+N, indicated by the curves labelled

by N = 4, 6 and oo, where N = oo corresponds to the continuum limit .

curacy and reliability necessary for playing the games
we played .
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