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We present results related to the search of SU(2) instantons on a geometry [0, L] 3 x [0, T] obtained using over- 
improved cooling [1] with fixed boundary conditions. We also introduce a criterion for finding a sphaleron at the 
top of the energy barrier of the instanton path. 

1. I N T R O D U C T I O N  

In a previous publication [1] we have developed 
a method to find stable instantons on a lattice. 
It is a well known fact [2] that  the Wilson ac- 
tion does not allow for such configurations. The 
reason is that  the lattice artefacts drive them to 
localized objects of the size of the lattice spac- 
ing which finally "drop" through the lattice. To 
cure the problem one can play with these lattice 
artefacts and define an action that  has still the 
correct continuum limit and allows for stable in- 
stantons. The one we have selected, and used up 
to now in our numerical simulations, is 

+ 48 ~ Tr 1 - ~ '  

(1) 

One can check (for details see [1]) that  for a 
smooth continuum configuration (A~,(x)) defined 
on the lattice, the modified action of eq. (1) pro- 
vides the correct continuum limit while leaving 
freedom to tune the effect of the lattice artefacts 

*Based on the talks presented by the first and fourth 
author. 

by tuning ¢, i.e. (a is the lattice spacing) 

a 4 ga 6 
S(e) = Z Tr [ - -~F: , , ( z )  + --~CDur,  v(x)) 2 

~jl.tjY 

+O(aS)] (2) 

Just by dimensional arguments one deduces for 
the continuum instanton 

S(e) = 87r2(1 - ~ d (alp) 2 + O(a/p) 4) (3) 

where p is the scale parameter  of the instanton 
and eq. (2) implies d > 0. The Wilson action 
corresponds to e = 1 and clearly gives rise to 
an action that  decreases as p decreases, explain- 
ing the instability. If, on the contrary, we choose 

negative (which we will call over-improvement 
[1]) the instanton will grow to make the action 
decrease until it reaches the maximum size al- 
lowed by the finite (lattice) volume. This turns 
out to be extremely convenient, as we are inter- 
ested in finding the largest instanton that  fits in 
a volume [0, L] 3 × [0, 7]. This instanton will cor- 
respond, as T ~ 00, to tunnelling between two 
classical vacua (through presumably the lowest 
energy barrier) and we conjecture that  the con- 
figuration that  sits at the top of the instanton 
energy barrier is a sphaleron. The hope is, that  
knowing the sphaleron will allow us to map out 
the relevant degrees of freedom to compute the 
non-perturbative contributions to the spectrum 
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(for further details and a similar study in S 3 x IR 
see [3] and references therein). 

The search for this widest instanton is compli- 
cated by the fact that  p is not the only relevant 
parameter for the configurations. For the infi- 
nite volume instanton, for instance, there are in 
addition the 4 position and 3 global gauge pa- 
rameters. The situation is rather different on a 
hypertorus [0, L] 3 x [0, T]. It is known [4] that,  
as long as T is kept finite, there are no regu- 
lar self-dual solutions with topological charge 1 
and periodic boundary conditions. The proof no 
longer holds when one introduces twisted bound- 
ary conditions [5] keeping at least one component 
of the twist tensor nu~ E 2Z2, different from zero. 
Indeed, for orthogonal twist 1 i~p~AaB~vnAa -- 

0 mod2 and nuu # 0 mod2, for some /~, v, it 
has been shown [6] that  solutions exist by gluing 
a localized instanton (with its 8 parameters) to 
the zero-action configuration in the presence of a 
twist. However, the proof only refers to small in- 
stantons and does not give much of a clue about 
the moduli space of large instantons that  extend 
up to the "boundary" of the torus. In [1] we have 
presented results with both twisted and untwisted 
boundary conditions that  shed some light on this 
question. Let us briefly summarize these results. 

When T ~ oo the action can only remain finite 
if the energy density vanishes at It I ~ oo. From 
the vanishing of the magnetic energy one deduces 

Ai( g, t ---* =t=c¢ ) = iCi~ as /2L , (4) 

where C~ e [0, 47r] (A0 = 0). Moreover, the van- 
ishing of the electric energy implies that  C/i has 
to be asymptotically time independent. We can 
therefore characterize instantons in T 3 × IR by 
the values of C~. Assume now that  the instan- 
ton configuration prefers to interpolate between 
non-equal points in the vacuum valley, that  is 
C + # C/--. If we make the time finite and im- 
pose periodic boundary conditions, the configu- 
ration will have to move along the vacuum val- 
ley to interpolate between C/-" and C +. This 
movement will give rise to a non-zero and con- 
stant electric energy £E(t), where the magnetic 
energy £B(t) goes to zero, thus destroying the 
self-duality. As pointed out in [1] we have clearly 
observed this behaviour in the numerical simu- 

lations with periodic boundary conditions. For 
increasing T the electric energy in the tail will 
decay as 1/ (T  - To) 2 (To being the time interval 
where £B(t) # 0 ) such that  as T --* oo self- 
duality is restored. We have also checked that  
a twist in time removes the electric tail even at 
finite T, giving rise to 8-parameter solutions (p, 
position and the 3 parameters in the vacuum val- 
ley C + = 2~r-C i- (mod4r)(up to a periodic gauge 
transformation)). 

Several questions remained, such as the exis- 
tence of instanton solutions for arbitrary values of 
C~ and the interplay between p and these bound- 
ary values. 

In what follows we will present some prelimi- 
nary results obtained using fixed boundary con- 
ditions (f.b.c.), a trick that  will allow us to ex- 
plore the vacuum dependence of the instantons. 
To conclude we will also introduce a criterion for 
finding a sphaleron at the top of the energy bar- 
rier along the instanton path. 

2. F I X E D  B O U N D A R Y  C O N D I T I O N S  

The gauge invariant observables that  charac- 
terize a configuration in the vacuum valley are 
the Polyakov line expectation values 

(f ) Pi --½Tr Pexp( Ai(~, t)dxi) = cos , (5) 

as well as the products 

(P ,/0" ,// ½Tr exp Ai(g, t)dxi)Pexp A i ( ~ , t ) d z  j 

( Ci + Cj ] = Pii , i # J (6) 
= C O 8  \ J 2  ' 

We want to address the question of whether in- 
stantons exist interpolating between any two sets 
{P, (t = +oo) - P,*, P,~ (t = +oo) - Pi~}- 
For that  we propose to perform over-improved 
cooling with the constraint of keeping the ob- 
servables { P~ ,  P~  } fixed at the time bound- 
aries of the lattice. This idea can be easily imple- 
mented on a N 3 x (Art + 4) lattice by fixing the 
values of the link variables Ui(g, nt = 1, 2) = U/-" 
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Figure 1. Numerical results for lattices 73 x 21 (squares), 83 x 24 (triangles) and 123 x 36 (pentagons) 
obtained from over-improved cooling with ~ = -1  and fixed boundary conditions given by eq. (9). Fig. (a) 
contains data for EF,(t) with the above mentioned symbols and EB(t)  (crosses for N, = 7, stars for N, = 8 
and hexagons for N, = 12). In fig. (b-d) we plot the Polyakov lines Pi(t)  through the points with maximal 
(squares, triangles and pentagons) and minimal (crosses, stars and hexagons) E~ at t = 0. 
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and Ui(~, nt = Art + 3, N, + 4) - U + , to be 

V/=e ~ I if n, • N, 
= c ~  c *  (7) [ cos(=~--) + i~3 sin(-V-~ -) if ni ---- N, 

It is easy to check that  this choice gives the cor- 
rect result for {P~,  + Pii }" Notice also that  it is 
necessary to fix the boundary configurations in 4 
instead of 2 time slices, since S(e) (eq. (1)) con- 
tains terms proportional to 2 x 2 plaquettes that  
would induce a coupling between the two bound- 
aries if we would update the links at nt = 2 or 
Nt + 3. We also fix 

U0(~, nt = 1, N, + 3) = I (8) 

This procedure therefore yields a N~ x N, lattice 
with fixed values of the time boundary conditions. 

To show the viability of the method we present 
in fig. 1 the results for e = - 1  and 

C -  = (0, 27r, 27r/3), C + = (2r, 0,47r/3) , (9) 

for lattices with N, = 7, 8, 12 and Nt = 21, 24, 36 
respectively. We plot (a) both the electric and 
magnetic energy (£E,B(t)) after appropriate scal- 
ing with N,, and (b,c,d) the Polyakov lines Pi(t) 
trough two particular points 4, corresponding to 
respectively maximal and minimal E32 at t=0.  
The scaling properties of the configuration, as 
well as the good degree of self-duality of the solu- 
tion are clear. It is useful to point out here that  
the instanton approaches the vacuum valley only 
exponentially, so that  by forcing it to decay to 
a pure gauge for finite T one distorts the config- 
uration. However, choosing N, big enough with 
respect to iV, makes the degree of distortion away 
from self-duality quite small, as is obvious from 
fig. l(a). 

In [1] we have noted that  the numerical sim- 
ulations with the twist n0i = (1, 1, 1) seemed to 
indicate that  the largest instanton preferred to in- 
terpolate between the values of eq. (9). To check 
this further we have performed simulations on a 
83 x 24 lattice, keeping C~, 2 = 0, 27r fixed, while 
changing cos(C~-/2) over the entire range [-1,  1], 
with the twisting condition C + = 2~r - C/-, Vi. 
The initial configuration, with cos(C~/2) = q:l, 
was generated from a random start (with f.b.c.) 
to which we applied over-improved cooling with 

e = - 1  until the action was close to 8~r 2. From 
there we went on by changing in small steps the 
values of C~, each step cooling again the con- 
figuration for 500 sweeps to eliminate the distor- 
tion due to the change of boundary values. In 
that  way we generated a row of configurations 
with different values of the Polyakov lines P~ .  If 
necessary each configuration was further cooled 
to improve the degree of self-duality. The cor- 
responding results are presented in fig. 2. In 
2(a) we plot ~E,B(t) and in (b,c,d) the Polyakov 
lines, this time just through the point with max- 
imal Eg at t=0. Fig. 2(a) shows how the central 
part of the energy density is just slightly modi- 
fied while changing C~,  indicating that  the de- 
pendence of the size of the instanton on certain 
choices of the vacuum parameters can be rather 
weak. This could be an indication that  the low- 
est positive eigenvalue of the energy functional at 
the sphaleron is small. We have also blown up 
the tails in fig. 2(a) to show how certain choices 
of boundary conditions give rise to non-selfdual 
configurations, due to the appearance of an elec- 
tric tail (which does not decrease under further 
cooling). However, as we previously indicated, as 
T ---* oo this tail effect will disappear giving rise 
presumably to a self-dual instanton on T 3 x lR. 

3. S P H A L E R O N  C R I T E R I O N  

A sphaleron is a solution of the 3-dimensional 
equations of motion with precisely one unstable 
mode, presumably along the tunneling path be- 
tween the classical vacua. This means that  the 
sphaleron satisfies in the continuum the equation 

E : D i F I j  = 0 (10) 

This equation can be easily rewritten on the lat- 
tice. Take for instance the 3-dimensional SU(2) 
Wilson action 

Sw = Z Tr (1 - ~fl~]t ) , (11) 
~,i,j 

and replace the link Ui(~) by eXUi(~), with X a 
Lie-algebra element. The condition of extremum 
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Figure 2. Numerical results for a lattice 8 a x 24 obtained from over-improved cooling with e = - 1  and 
changing boundary conditions as described in section 3. Fig. (a) contains data  for C~,B(t), in the upper 
part of the figure we plot the tails at an enlarged scale. In fig. (b-d) we plot the Polyakov lines Pi(t)  

through the points with maximal E~ at t = 0. 
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of the action implies 

U'(x) (12) u , ( z ) -  IID ( )II ' 

with 
2 

j # i  x 

and II0 ( )11 = For the sphaeron configura- 

tion, eq. (12) has to be fulfilled. Let us introduce 
the following functional [7]: 

Ilfd )ll 

For a sphaleron, as well as for a pure gauge config- 
uration, S = 0. The reasoning applies exactly the 
same for the over-improved action S(s) (eq. (1)) 
but in that case Ui(~') also contains staples asso- 
ciated to the 2 × 2 plaquettes attached to the link 
Ui(g). We will denote the corresponding func- 
tional by S(e). It will give us a perfect criterion 
to check whether or not the configuration that 
sits at the top of the instanton tunneling path is 
a sphaleron. 

In fig. 3 we plot ~5(e = -1)  (after appropriate 
scaling with N~) for the instanton path of fig. 1. 
The shape changes dramatically at t = 0, seem- 
ingly indicating that we are close to a zero value 
for S(e = -1).  However, for this particular choice 
of boundary conditions there is still a small non- 
zero gap at t = 0 that does not decrease while in- 
creasing N8 (decreasing the lattice spacing a) and 
is thus not expected to be a lattice artefact. By 
monitoring the dependence of this gap as function 
of N , / N 8  we have also verified that it is not due 
to the finiteness of T. All this indicates that the 
chosen values of the boundary conditions in fig. 1 
are not yet exactly the ones that correspond to 
tunneling over the lowest energy barrier and that 
exploring further the vacuum dependence of the 
instanton configurations is necessary. We also in- 
tend to use minimization of S(e) [7] to directly 
find the true sphaleron. 
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