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We briefly discuss the general principles of analytic calculations in finite volume gauge theory 
up to volumes of at least five Compton wavelengths of the scalar glueball. We discuss recent Monte 
Carlo results in the finite volume context and present new analytic results on the E- and T~ 
masses. Some speculations on going to larger volumes are presented. 

We have performed calculations 1'2 based on 

the observation that the zero-momentum effect- 

ive Hamiltonian derived by LHscher 3 is still 

applicable at "large" values of the renorma- 

lized coupling constant. The non-trivial topo- 

logy of configuration space, probed increasing- 

ly at growing coupling as the wave functional 

spreads, can be taken into account approximate- 

ly by imposing boundary conditions in the space 

of zero momentum field configurations. Gribov 

ambiguities, associated with the non-trivial 

topology of configuration space, are avoided 

here by using more than one co-ordinate 

patch 4 . 

We start with pure SU(2) gauge theory in the 

Hamiltonian formulat ion on a finite cubic 

volume 3. The vector potentials are taken 

periodic and the classical vacuum (after divi- 

ding out the gauge freedom) forms a three- 

dimensional vacutml-valley (also known as toron- 

valley5). At eight gauge inequivalent points 

within a connected component of the vacu~n- 

valley, the quadratic approximation for the 

transverse fluctuations vanishes, thus preven- 

ting a simple one-loop calculation of an 

effective three-dimensional Hamiltonian for the 

"slow" vacu~n-valley co-ordinates. At these 

eight points the classical potential is 

quartic, and since the vacuum-valley is widest 

here, this is where the wave functional will 

concentrate in perturbation theory. LHscher 3 

therefore derived an effective Hamiltonian for 

the nine zero-moment~a modes Ai(~) = ci/L, with 

c. a spatially constant, SU(2) Lie algebra ele- 
i 

ment. These are the modes in which the classic- 

al potential is quartic when expanding around 

the perturbative vacuum A. = 0. 
i 

The other seven gauge inequivalent perturba- 

rive vacua are related by homotopieally non- 

trivial gauge transformations with homotopy 

Z23, characterized by 't Hooft's twist 6. Wave 

functionals thus fall into representations of 

this homotopy group, labelled by 't Hooft's 

electric flux 6 ~ E Z23. A perturbative energy 

level then splits into four levels: (i) a 

singlet with ~ = O, (ii) a triplet with one 

unit of electric flux, i.e., e = (1,0,0), 

(0,I,0) or (0,0, I), (iii) a triplet with two 

units of electric flux, i.e. ~ = (i,I,0), 

(I,0, i) or (0, i, 1) and (iv) a singlet with 
+ 

three units of electric flux e = (I,i,I). The 

degeneracies are due to the cubic symmetry and 
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the split in energy can be understood as 

tunnelling through a quantum induced potential 

barrier 7 . 

The symmetries induced by the above-men- 

tioned homotopically non-trivial gauge trans- 

formations can be reformulated as boundary con- 

ditions on the wave functional. This is in ana- 

logy to the double-well V(x) = (x2-1) 2, where 

levels split into even and odd parity states, 

characterized by the boundary conditions 

Vx~(0) = 0 and ~(0) = 0 respectively. In an 

adiabatic approximation 2, the boundary condi- 

tions can be written in terms of just the zero- 

momentum vector fields c.. This leads to only a 
1 

minor modification of LUscher's effective 

Hamiltonian, which we extended to higher orders 

mainly to study stability of the results. In 

the course of this extension we discovered 

appropriate co-ordinates for the vacuum-valley 

within the set of zero-momentum vector poten- 

tials, thereby technically allowing the 

progress we made. 

The Hamiltonian cannot be solved exactly, 

but a simple Rayleigh-Ritz basis allowed us to 

compute the matrix for the Hamiltonian analyti- 

cally. Truncating the basis will yield an upper 

bound for the energies, and (with slightly more 

work) a rigorous lower bound 2. In this way we 

can claim better than three-digit accuracy for 

most of our results. The energy levels are 

classified by the electric flux ~ and by the 

irreducible representations of the cubic group 
+ 

(or the subgroup which leaves e invariant). 

Following the notation of Ref. 8, there are for 

each parity two singlets (At and A~), one 

doublet (E ±) and two triplets (T~ and T~). For 

non-zero electric flux we denote the lowest 

energy state with i units of electric flux by 

e?. The results of our calculations can be 
i 

found in Refs. i and 2. 

For larger values of g the energies become 

more sensitive to the higher order corrections 

in the effective Hamiltonian. However, the 

energy difference with the vacuum (i.e., the 

A1 + ground state), are remarkably stable. We 

consider the renormalization group invariant 

quantities z R = L'(ER-EA~) ,~ where EA~ is the 

vacuum energy and E R is the ground state energy 

of the representation R (for R = A~, E R is the 

first excited A~ energy). These quantities can 

be measured in Monte Carlo calculations on L3xT 

lattices, by use of time-time correlations of 

the appropriate operators (with T large enough 

to ensure zero temperature). See Fig. 2 of 

Ref. 1 for a comparison with the Monte Carlo 

data of Re f. 9. Elsewhere in this volume, Berg 

presents new data for /Ze~/ZE+(=/K/m(E+)) and 

ZA~/ZE+(=m(A~)/m(E+)) as a function of ZE+~ 
which agree still better with our results, 

even up to ZE+ ~ 7.5. Remaining deviations, 

especially at lower ZE+ , could be due, among 

other things, to lattice artefacts in the Monte 

Carlo data (lattices as small as 4 3 in the 

spatial directions are used) or to the non- 

adiabatic corrections in our analytic calcula- 

tions. We investigated the latter issue care- 

fully in Ref. 2 and found that this non-adiaba- 

tic deviation is biggest at intermediate dis- 

tances and surprisingly improves beyond about 

ZE+ ~ 3. 

Nevertheless, we expect our zero momentum 

approximation to break down somewhere, to res- 

tore rotational invariance and have the energy 

of electric flux behave as predicted by a 

string picture. Let us quickly review the 

status of these issues. Our results yield 

ZT~/ZE+~ ~ 0.5 for ZE+ > 2.5. If rotational 

invariance is restored, the irreducible repre- 

sentations of the cubic group have to combine 

into angular momentum multiplets in a well 

prescribed way. As an important example, a 

JP = 2 + quintet is composed of an E + doublet 

and a T~ triplet. A necessary condition for 

rotational invariance is therefore that 

ZT$/ZE+ = 1. Unfortunately, no reliable Monte 

Carlo results for T{ are available yet to 
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confirm our prediction, but we can confidently 

say one has to at least go beyond ZE+ = 5 to 

restore rotational invariance. This seems very 

counter-intuitive, since naively one expects 

the boundary conditions to be irrelevant for 

volumes larger than the Compton wavelength of 

the smallest mass. However, one must remember 

that gauge theories have a reasonably large 

length scale, set by the deconfining phase 

transition (yielding ZE+~5). The best way to 

understand the relevance of this distance scale 

in the context of zero temperature and finite 

volume, is to use 't Hooft's duality transform- 

ation 6. However, it will not do more than indi- 

cate one should expect a "cross-over" in the 

mass-ratios at this distance scale, and cer- 

tainly does not predict the precise value of z, 

or the size of the effect. Still, recent Monte 

Carlo data for the ratio ZE+/ZA~ i0 at large 

volumes do seem to confirm a strong cross-over 

at ZA~ ~ 6. Figure ] collects the Monte Carlo 

results known to us before Lh~, conference. For 

SU(3), however, the same ratio was computed by 
11,12 

two groups . They agr~<, fer operator- 

operator correlations, but ~ho ~old source 

method 12 gives a much lower E + ma~ (with large 

statistical error bars). It was suggested 11 

that for ZA~ > 6 the operators used in Ref. i0 

might couple to an excited E + state rather than 

to the E + ground state. In the light of this we 
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FIGURE I 

Comparing results for mass ratios. The solid curves are our analytic results; the dashed lines 

include the higher order corrections 1'2. In (a) we give the results for JZe+/ZA+ and in (bY for 
• i ~I . + 

ZE+/Z^+ where curve (i) is for the E + ground state and curve (ii) is for the first excited E state. 

The da~tla (-~) are from Ref. 9, (O) from Ref. I0 and ~) combines results of Ref. 9 and Ref. 10. In (c) 

we compare negative parity results. Curve (i) is for ZA_/ZA+ , curve (ii) for zT_/ZA+ and curve (iii) 
f l l 2 1 
or ZE_/ZA+. The data [(O) for z A_ ZA+ and (-~) for ZE_/ZA+ ] are from Ref. 10. The arrow at ZA+ = 5 is 

• I . i i . . 1 
the distance beyond which we nalvely expect our approxlma~ions to become inaccurate. 
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examined our results for the first excited E + 

state, and find at ZA~ ~ 6 a ratio for the 

excited E+ mass to the A~ mass of approximately 

1.4. Hence our results are consistent with the 

above conjecture, but we are hesitant to 

consider our results reliable beyond ZA~ ~ 5. 

In Fig. i we also give analytic results 

obtained "on request" after the conference for 

ZE_/ZA~ and ZT~/ZA~. (For TT we found 

ZT~/ZE-~l.4-1.5.) 

Concerning the behaviour of the energy of 

electric flux, our calculations predict roughly 

Ze~/Ze ~ N i 1, whereas a string picture would 

predict ZeT/Ze~ ~ /i 6. This is such a marked 

contrast that these ratios of different units 

of electric flux can be used as a very good 

indicator for the transition to the confining 

domain. Very recent Monte Carlo data by Berg 13 

confirm our predictions for these electric flux 

energy ratios in the intermediate volume range, 

and no string-like behaviour is observed up to 

ZE+ ~ 6-7. 

Let us finally speculate on the mechanism 

whereby the zero-momentum approximation breaks 

down. As mentioned above, our detailed analysis 

indicates that the adiabatic approximation 

seems to improve for increasing coupling. We 

therefore consider it more likely that it will 

again be the topological non-triviality of 

configuration space that causes a sudden 

change. This time it should be the good old 

(non-zero action) instantons which are respon- 

sible. It is important to stress that it will 

be the instantons with a size of the total 

volume which will dominate first (remember that 

the coupling constant is set at the scale 

= l/L). In the Hamiltonian picture it simply 

means that a wave functional in one connected 

component of the vacu~n-valley starts to see 

the other components. This is necessarily 

outside of the zero momentum sector. Therefore, 

it might be possible that suitable boundary 

conditions in the first few non-zero momentum 

fluctuations will approximately take these 

effects into account. We believe that Gribov 

horizons will again prevent these fluctuations 

from becoming arbitrarily large. One expects 

this effect to be drastic, since increase of 

the coupling will make the volume bigger so 

that larger instantons fit in, and will also 

enhance the likelihood that smaller instantons 

contribute. One might envision this causing the 

vacuum energy to develop a local minimum, indi- 

cating an instability of the vacuum against 

domain formation. It would make the coupling 

constant stop running at the domain size, and 

might explain an electric flux string as 

"beads" of domains with one unit of electric 

flux 2. If we suppose these domains to have a 

size corresponding to ZE+ ~ 5 and we set the 

scale by a string tension of (420 MeV) 2, one 

easily extracts a width of 0.55 fm and an 

energy density in the string of 2.9 GeV/fm 3. 

This is sufficiently close to Monte Carlo 

results 14 to encourage making these vague ideas 

more precise. 

There is a more direct indication that non- 

zero action instantons are relevant, namely the 

observation that the topological susceptibility 

(Xt) shows a sudden impression in the decoo- 

fined region, when using the cooling method 15. 

Unfortunately there is disagreement with the 

16 
geometric methods on the value of Xt in the 

confined region and the suppression of Xt in 

the deconfined region. We hope this discrepancy 

can be resolved in the near future. 

To conclude, we feel confident of our under- 

standing of the low energy dynamics of pure 

gauge theory in a cubic volume with periodic 

boundary conditions, up to ZE+ ~ 5, or even a 

little beyond. We hope that Monte Carlo results 

can guide us on how to extend our analytic 

understanding to larger, and hopefully infi- 

nite, volumes. 
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