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We in t roduce  a new Symanzik  improved  act ion by adding a 2 x 2 p laque t te  in such a way tha t  the  Feynman  rules 
in the covariant  gauge simplify. We call this the  square Symanzik  action. Some comparisons wi th  the  con t inuum 
and the  s tandard  Wilson act ion are made  in in te rmedia te  volumes,  where mass rat ios are accura te ly  known and 
the precise amount  of improvement  can be determined.  Rat ios  of the L a m b d a  parameters  will be presented,  as 
well as par t ia l  results for the one-loop improvement  coefficients. We discuss some of the intr icacies tha t  arise 
because of violat ions  of un i ta r i ty  at the scale of the cutoff. In par t icular  we show how a field redefini t ion in the 
ze ro -momen tum effective act ion allows one to remove  scaling violat ions l inear in the la t t ice  spacing. 

1. I N T R O D U C T I O N  

We consider here the Symanzik improvement 
scheme [1], which is designed to remove lattice 
artefacts by adding irrelevant operators to the 
lattice action, whose coefficients are tuned by re- 
quiring spectral quantities to be improved to the 
relevant order (on-shell improvement [2,3]). Per- 
turbative calculations, although difficult, are still 
manageable. For Symanzik improvement to work 
it seemed that  unreasonably small values of the 
bare coupling constant were required. 

Mean field inspired Symanzik improvement [4, 
5] was introduced to beat the bad convergence 
of per turbat ion expansions in the bare coupling 
constant. In particular the Parisi mean field cou- 
pling [4] defined in terms of the plaquette expec- 
tation value is seen to improve considerably the 
approach to asymptotic  scaling. Despite some at- 
tempts [6] no good theoretical understanding for 
this is available. In addition the prescription is 
argued to include tadpole corrections to the coef- 
ficients in the Symanzik improved action, which 
can be seen as a mean field renormalization of the 
link variables on the lattice. Only phenomeno- 
logical arguments have been provided to support  
this. 

One difficulty in testing improvement is how 
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to determine to which extent improvement has 
actually been achieved. For pure gauge theories 
standard tests involve restoration of rotational in- 
variance in the heavy quark potential [5]. It be- 
comes more problematic when one has to base the 
judgement on carefully extrapolated Wilson data. 

These problems inspired us to consider testing 
improvement for the pure gauge glueball spec- 
t rum in intermediate volumes, particularly em- 
phasizing the need to test improvement of scaling. 
In spectroscopy asymptotic scaling is not such an 
important  issue since one has to set the scale by 
fixing one of the masses anyhow. The main rea- 
son for considering intermediate volumes (up to 
0.75 fermi across) is that  this volume range can 
be accurately described in terms of an effective 
zero-mon:entun: model, nevertheless incorporat- 
ing important  non-perturbative features that  con- 
tr ibute to energy of electric flux. For SU(2) re- 
sults are known both for the continuum limit and 
for the Wilson lattice action, from which precise 
statements on the scaling violations for the mass 
ratios can be made. 

2. S Q U A R E  S Y M A N Z I K  A C T I O N  

As usual, one connects a continuum configura- 
tion with one on the lattice by parallel t ransport  
of the vector potential along the links 

U~,(x) = P e x p (  Au(x  + sf~)ds) . (:) 
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This allows one to extract  the irrelevant higher 
order operators tha t  need to be cancelled in a lat- 
tice action. We introduce the new class of actions 
by adding a 2 × 2 plaquette to the ones considered 
by Liischer and Weisz, 

S({ci}) =- E T r { c o < , - ~ > + 2 c , < 1 -  ~ - ~ _  _>+ 
x 

4 c 2 { ' - ~ > + 4 c 3 ( ' - ~ > - 1 - c 4 ~ - ~ }  } 

a 4 

= -  ~ (Co + 8c,+ 8c2 + 16c3 + 1 6 c 4 ) E T r  (F~v (x ) )+  
Z , I J , P  

a 6 

-~(Co+ 20cl-4c2+4c3+64c4)ET?(Dt,  Fuv(x) )e+ 

a6(3+c3)  E Tr(7:)uF":~(x)D"F';~(x))+ 
x ,p ,u ,A 

(.16 C2 -3 E Tr((Dt'F"~)2) + ('9(aS) " (2) 

Sometimes in the l i terature c2 and ca are inter- 
changed [7,8]. Here we followed the convention of 
ref. [2] and we have taken the liberty of assign- 
ing the coefficient c4 to the 2 x 2 plaquette. The 
< >  imply summing ~u ¢ u (¢  A), labelling the 
edges of the plaquette,  with the point x at tached 
to (say) the lower left corner [7]. At tree-level 
only the planar loops are considered, c2 and c3 
acquire non-zero values only at one-loop order, 
but  as was shown by Liischer and Weisz [3] field 
redefinitions allow one to put  ca --- 0. For the LW 
Symanzik action (c4 -- 0) one has co = 5/3 and 
cl = - 1 / 1 2  at tree-level, but  this does not allow 
for a "covariant" gauge condition that  will make 
the gauge field propagator  diagonal in the space- 
time indices. The 2 x 2 plaquette allows one to 
"complete a square" when choosing c4 • co = c~, 
leading to the gauge fixing functional (z - el~co) 

= ( l + z ( 2 + o t , ) ( 2 + o , ) ) q , ( x ) .  (3) 
It 

We decided for this reason to call it the square 
Symanzik action. Here O~ denotes the lattice dif- 
ference operator  c_?,~(x) -- V(x + f~) -- ~(x). As 
a bonus we note that  the condition c4co = c2: is 
invariant under multiplicative link renormaliza- 
tion, as they appear  in the tadpole improvement 

scheme, allowing one to easily include such factors 
in a perturbat ive calculation. At tree-level one 
now finds Co = 16/9, Cl = - 1 / 9  and c4 = 1/144. 
We have verified that  this action satisfies the pos- 
itivity bound [3]. It is amusing to see the expres- 
sion for the a s term in the expansion of the action 
simplify to 

a 4 8 
S = - E T r [ T  F~,~(x)- ~O (D~Fu~(x) )2]+o(al°) ( 4) 

(behaving as the Symanzik action for cooling [7]). 
At tree-level a tadpole parameter  u0 modifies 

z = c, lco = - 1 / 1 6  to z = -1/16Uo 2, whereas 
co = 1 / (1+4z)  2. One finds in the covariant gauge 
the ghost (P)  and vector (Pu-) propagators to be 

1 
P(k) = 

v/-~ ~ (4 sin2(k;~/2) + 4zsin 2 k :0 '  

P,~(k) = v ~ ( 1 T 4 z c o s 2 ( k , / 2 ) )  . (5) 

3. E F F E C T I V E  A C T I O N  

One can now perform a background field cal- 
culation to determine the one-loop effective ac- 
tion for the zero-momentum gauge fields. For the 
Wilson action and the continuum this was done 
previously [9] and shown to lead to rather accu- 
rate results. Like for the Wilson case one writes 
U~(x) = eq,(z)eC,(t)/N, with N the number of 
lattice sites in the spatial direction (taking the 
number of sites in the time direction infinite) and 
~u(x) the quantum field, restricted to non-zero 
(spatial) momentum, to be integrated out. This 
choice on splitting off the quantum component of 
the lattice field yields a particularly simple back- 
ground gauge fixing function 

,a 

"covariantizing" the difference operator  to 

b~,~(x) = ec"(t)/N ~p(x -t- f~)e -c'(t)/N - ~(x). (7) 

3.1. T h e  SU(2)  e f fec t ive  p o t e n t i a l  
The one-loop calculation greatly simplifies for 

an abelian constant background field as this al- 
lows one to diagonalize the propagator  with re- 
spect to the isospin neutral and charged decompo- 
sition of the gauge and ghost fields. The momenta 
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in the background field ~ = ½iCg3 are shifted, 
fc---~fc+sC/N, where s = 0 for the neutral isospin 
component and s -- 4-1 for the two charged com- 
ponents. It is not hard to find the eigenvalues of 
the fluctuation operators for the ghost and gauge 
fields 

Agh(k) ":-- V ~  Z 4sin2(k~/2)(l+4zcos2(ku/2)), 
V 

Az(k ) = v~(l+4zcos2(ku/2))Agh(k).  (8) 

These eigenvalues can be writ ten as products  of 
factors 4 sin 2 (k0 /2 )+  ~2, where the wo can occur 
in complex conjugate pairs at spatial momenta  
close to the edge of the Brillouin zone. As it is 
well-known that  the sum over k0 for one such a 
factor can be performed explicitly, it is not sur- 
prising we can find a closed expression for the ef- 
fective potential, as a sum over the appropriately 
weighted logarithm of the eigenvalues 

V/ b(d)=NZ{Zlog[ 2r2 r,,+Ci]  l+ zco  t 
r~EZ~ i 

+4asinh(2u0 ~ 1  +4z  w2 /------~-~2 ' 

with w 2 ~ 4 Z i  sin2 (ki/2) (1 +4z  cos 2 (ki/2)), and 

= (27r~+C) /N.  This effective potential, nor- 
malized to V(0) = 0, is plotted for u0 = 1 in 
fig. 1 as compared to the result for the Wilson 
action (z _= 0) and for the continuum ( N ~ o o ) .  
Although this effective potential  is not spectral, 
since near C 6 27r2Z 3 the adiabatic approximation 
for integrating out the "charged" zero-momentum 
modes breaks down, one sees that  improvement is 
quite efficient in removing scaling violations (only 
scaling violations to fourth order in the lattice 
spacing a = 1/N remain). At N = 6 we can 
not distinguish the result from the continuum at 
the scale of this figure. One might even fear that  
choosing Uo # 1 makes the agreement worse. 

3.2. T h e  L a m b d a  r a t i o s  
One can proceed as in the Wilson case with 

computing the one-loop coefficients for the effec- 
tive action [9]. In particular this provides for 
N ~ cx~ the renormalization of the bare lattice 

V 

° . -  . . . . .  - . . .  

2 

1 

G 
1 2 3 4 5 6 

Figure 1. The effective potential for a constant 
Abelian background field cl = ½iCg3. The full 
line represents the continuum result. The lower 
two dashed curves are for the square Symanzik 
action with N = 3 and 4. The upper three dotted 
curves are for the Wilson action with N = 3,4 
and 6. 

coupling at fixed physical volume. As Lorentz in- 
variance is replaced by cubic invariance (both by 
the lattice discretization and the periodic bound- 
ary conditions), two independent determinations 
of the Lambda ratios can be extracted from the 
effective Lagrangian 

dc'~ 2 1 a 2 
½( ~+cq)("~)+¼(~'~+c~2)(F~i) +Vl(c ). (10) 

Here g - 2 =  g~-2_ l l log(N)/12~r  2 is kept fixed 
while taking the continuum limit. In this limit 
a l  and a2 differ by identical finite amounts from 
what was found for the continuum and the Wil- 
son action. This finite difference allows one to ac- 
curately compute the Lambda parameter  ratios. 
These ratios were also computed using the heavy 
quark potential method of ref. [8], which allows 
one in addition to obtain the result for SU(3). 
For the ratio of the square Symanzik action to 
the Wilson action we find. 

As2/Aw = (4.0919901(1) for SU(2)'~ 
5.2089503(1) for S U ( 3 ) ] "  (11) 

3 .3 .  O n e - l o o p  i m p r o v e m e n t  
Tests of tadpole corrections to variant tree- 

level improved actions have been performed be- 
fore [10]. However, we remind the reader that  
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there is only one pure gauge improved lattice ac- 
tion tha t  was computed  to one-loop order [2]. 
I t  is our a im to bring the square Symanzik ac- 
tion to this same level. In principle this pro- 
vides a way of test ing to what  extent the suc- 
cess of the tadpole  improvement  depends on the 
choice of action. Independent ly  it is a useful 
check on the consistency of the Symanzik im- 
provement  scheme with its inherent redundancy 
in choosing the lattice action to cancel scaling vi- 
olations. For these per turba t ive  calculations of 
the one-loop corrections c~ one follows the well 
established route of using the twisted finite vol- 
ume spectroscopy [2]. As a normalization con- 
dition on the definition of the coupling constant  
one imposes c~ + 8c~ + 8c~ + 16c~ = 0. Requiring 
the physical mass of the lowest s ta te  to have no 
quadrat ic  scaling violations to one-loop order for 
the square Symanzik action leads to 

, , , ( - 0 . 0 0 8 3 8 ( 1 )  for SU(2)) 
ci - c2 + 4c4 =  ,-0.01545(2) for SU(3) .(12) 

As an independent  check this combination was 
also extracted (at higher accuracy) from the 
heavy quark potential.  In addition the on-shell 
three point coupling extracted in the twisted fi- 
nite volume allows one to find [2] a value for 
36(c~ - c~ + 4c~) 4- 8c~. This computa t ion  is 
ra ther  involved and still in progress. Note tha t  
c~ appears  in the combinations c~ 4- 4c~ and 
c~ - 16c~, as is also dictated by eq. (2). There- 

' is a free parame-  fore as was to be expected c 4 
ter. It  need not, but  can, be fixed by requiring 
c4c0 = c 2 to one-loop order. Finally we quote the 
result for the single plaquet te  expectat ion value: 
u 4 = 1-0 .35878 .  g 2 ( g - N - ' ) / 4 .  

4. M O N T E  C A R L O  R E S U L T S  

In the intermediate  volume context we can con- 
sider at most  lattice spacings up to 0.25 fermi 
(asking to be absolved for pushing in this direc- 
tion), as the larger plaquettes tha t  appear  in the 
improved actions require the volume to be at least 
three lattice spacings in each direction. Despite 
the appearance  of uni tar i ty violations at  the scale 
of the cutoff, due to the non-local na ture  of an im- 
proved action, the intermediate  volume physical 

D square ~=2.2013 
43x128 a Symanzik ~=2.374 

xo Wilson ~=3. 

1,7 z 

. . J  

. 1.5 £ 

0 . 9 5  - - - -  - -  

. . . .  o.oU 
0.85 ~ -~, 

0 . 2  
. . . . . .  ZA; 

O0 

0.I 075  . . . .  I . . . .  { . . . .  I ,  
1 .5  2 2 . 5  3 1 .5  2 2 . 5  3 

ZA~ ZA; 

Figure 2. SU(2) Monte Carlo data for mass ratios 
in a small volume on a lattice of size 43 x 128, us- 

ing the Wilson action (crosses from existing da ta  
of Michael), the LW Symanzik action and our new 
square Symanzik action. The lines give the an- 
alytic results: full for the continuum and dot ted 
for the s tandard  lattice action (N  = 4). 

masses remain small enough in lattice units to ex- 
t ract  them from the decay of correlation functions 
in the t ime direction in the usual way. In larger 
volumes and coarser lattices the lat ter  problem 
was dealt with by taking the lattice much finer in 
the t ime direction [11], using the asymmetr ic  cou- 
plings well-known from finite t empera tu re  stud- 
ies [12]. Here we will consider only Monte Carlo 
da ta  at 0.018 fermi (/3 = 4/g 2 = 3 for the Wilson 
action, for which we compare  our da ta  to those 
by Michael [13]). Odd as it may seem, this is 
where the scaling violations for a lattice of 4 lat- 
tice spacings in the spatial directions are largest 
within the finite volume spectroscopy [9]. The 
da ta  corresponding to the LW Symanzik action 
is represented by the triangles and for our new 
square Symanzik action by the squares. In both  
cases we used tree-level improvement  only. The 
improvement  is significant. For the LW Symanzik 
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action the da ta  is within two sigma of the contin- 
uum values. The  results seem to indicate tha t  
the square Symanzik action is somewhat  less ef- 
fective, al though the difference is not significant. 
A comparison at  coarser lattices will be more in- 
teresting as one should like to see, as advocated,  
tadpole corrections to further  improve the results. 
For this purpose we present da ta  elsewhere at a 
lattice spacing of 0.12 fermi. 

5. H A M I L T O N I A N  

5.1. T o y  m o d e l  
A well-known problem of improved actions is 

tha t  the transfer mat r ix  is not hermit ian [14]. 
This is easily seen to be related to the next- 
to-nearest  neighbor couplings in the t ime direc- 
tion. We will i l lustrate things here by means of 
a simple one dimensional problem. For the ac- 
tion S(x) = ~,t (x(t+l)-x(t))2/(2g2a)+aY(x(t)) 
the part i t ion function at finite Euclidean t ime 
(T = aN) can be exactly rewrit ten in operator  
form [9] 

z = fVxe-S( ) = Tr(e-½aKe-aVe-½aK)N,(13) 

where K = --½g2(O/Ox)2. The Hamil tonian read 
off from this equation is only determined up to a 
uni tary t ransformation.  To lowest order one finds 

a 2 

H = K + V - ~-~[V, [I(, Y]] + O(a4). (14) 

Note that  [17, [I(, VII = g2V'(x)2. 
Next improve the kinetic te rm (x( t+l) -x( t ) )  2 

by 4(x( t+l ) -x ( t ) )2 /3 -  (x(t+2)-x(t))2/12. One 
finds that  the propaga tor  factorizes as P(k) = 
(e_ (k)--P+ (k))/Z, where P ;  i(k) = 4 sin~( } k ) + ~ ,  

Z = V/1-a2rn2/3, w~ = 6(1 4 - Z )  and m 2 = 
g2V' (0) .  This explicitly exhibits the unphysical 
pole mentioned before with masses m2+ ,,~ 12/a 
at the scale of the cutoff. They are not harmful 
for low-energy behavior [14]. It  would perhaps  be 
misleading to associate the spurious poles with 
ghosts as they do not just  occur in loops. Ver- 
tices do not preserve ghost number.  Nevertheless 
we expect their contribution to low-lying states 
to be suppressed in a way similar to the influence 
of virtual processes due to heavy particles. 

Let us introduce the following field redefinition, 
best  expressed in the Fourier representat ion 

~(k)=x(k).  , , / T y ~ V  ~ T ~  a2g 20V(~)  (1~) 
24 o~(-k)' 

where as usual/~ = 2 sin(k/2).  When subst i tut ing 
this non-local t ransformat ion in the action we find 

~2 (1 :'1- h [;2) I:~ (k){2 s = +av(x) (16) 
k 2ag2 

  le(k)l 2 3 2 

a g V,l~24_O(a5 ~ 
= E 2ag2 

k 

for which it is assumed tha t  ]~ = O(a). We 
note tha t  after the field redefinition, ignoring the 
O(a 5) corrections, the action is local in t ime and 
one obtains g = I ( + V + O ( a  4) from eq. (14). 

However, interactions will give rise to a non- 
trivial Jacobian under this change of variables, 
J(x) = det(O¢(k)/Ox(k')), or 

o v(x)  
J 2 ( x ) = d e t  az: / '  (17) 

where we took the liberty of modifying the O(a  4) 
terms in the operator  whose determinant  is to be 
evaluated. We could likewise define the transfor- 
mat ion such tha t  the Jacobian is given as above, 
although this leads in multi-dimensional cases to 
non-integrable transformations.  

Remarkably  one can rewrite this Jacobian up 
to an x independent factor as 

j2(x)=det(l-a2g2p+[O2V(X)ox 2 m 2 ] ) .  (18) 

Its  contribution to the part i t ion function Z can be 
interpreted as the effective action in a background 
field calculation, with the propagator  t runcated 
to the unphysical branch, albeit to lowest non- 
trivial order in the lattice spacing. One easily 
verifies that  for V(x) = Ax 4 this Jacobian gives 
rise to a mass correction linear in the lattice spac- 
ing, which was initially discovered by computing 
the mass gap to first order in A from the Feyn- 
man rules for the improved action of this simple 
model. As the model is quite similar to the ef- 
fective action we discussed before, we were quite 
puzzled by this result and it p rompted  the above 
derivation. 
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5.2. G a u g e  m o d e l  
Indeed, taking the results of sect. 3.1 we can 

compute easily part  of the effective action for the 
zero-momentum gauge fields. To obtain the effec- 
tive potential that  is valid near C = {~, where the 
tree-level potential is quartic in the gauge fields, 
one restricts the sum to ~ ¢ {~ and replaces Ci 
by rl - ~ i n  eq. (9). The result is de- 
noted by Vl(r~. An accurate description of the 
full effective potential to one-loop order is given 
by 

Yl (c) ~- V1 (7)'-~ 0~3 r2 F;k 2 +a4r2F~j 2 +abde t  2c (19) 

As can be extracted from the zero-momentum 
part of eq. (9), ~l(N) = "yl(oo)+ ~ ( v ~ -  1 ) / N +  
C0(1/N3), where "Y1 is the coefficient of ~v 2 in the 
effective potential. Generalizing the analysis of 
the toy model to the situation at hand one finds 
fi'om the Jacobian 5j'y1 = - ~ v ~ / N .  The miss- 
ing piece is provided by the non-triviality of the 
Haar measure for integration over the background 
link variables 

S H Y  1 (C) = - 2 N  Z log[2Nsin(rl/2N)/r{],  (20) 
i 

Indeed one finds (~U~[1 = IA~2N -1. Both the Jaco- 
bian and measure contributions compensate for 
the scaling violations linear in the lattice spacing 
and with it V1 (g) becomes free of scaling viola- 
tions to third order in the lattice spacing. 

Furthermore, rescaling c with (1 + ~g2"h/N 2) 
removes to a high degree of accuracy unwanted 
scaling violations in (~1 and c~2. More sur- 
prising was to find that  the field redefinition 
5ci = -2g ~ log( g)T)~F~i/(24~g) 2 is required to 
remove log(N)/N 2 scaling violations in 33 and 
c~5. As a non-trivial check the one-loop coeffi- 

1 t a 2 cient c~0, in front of the term ~(0~O0ci) , was 
computed. Its log(g)/N 2 term combines after 
the above field redefinition with the tree-level co- 
efficient of 1/(12g~N 2) in precisely the right way 
to renormalize the coupling constant. 

Remaining C0(N -2) scaling violations will and 
can be cancelled by the one-loop improvement co- 
efficients. Due to the unfortunate mixing with co- 
efficients that  are not easily accessible in lattice 
perturbation theory [9], we cannot at present get 
at these one-loop improvement coefficients along 

this route. As we have seen, using an effective 
action one imposes improvement only up to field 
redefinitions (or up to unitary transformations at 
the Hamiltonian level). This is more difficult than 
computing a few spectral quantities, but has the 
obvious benefit of manifestly improving infinitely 
many levels at the same time and would be a very 
non-trivial check on improvement indeed. 
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