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We construct the fermion zero-mode for arbitrary charge one oCU(n) calorons with non-trivial holonomy, both 
in the fnite temperature context (anti-periodic boundary conditions in time) and in the Kaluza-Klein compact- 
ification context (periodic boundary conditions in time). The zero-mode is localised on one of the constituent 
monopoles and we discuss a relation to the Callias index theorem. 

I. I n t r o d u c t i o n  

The SU(n)  instantons at finite temperature 
(or calorons) can be seen as bound states of n 
constituent monopoles, evident only when the 
Polyakov loop at spatial infinity is non-trivial. In 
the periodic gauge, A~,(t+/~, £)=A~,(t, £), 

7 ~  = lim P exp( A,(~, t )dt ) .  (1) 

After a suitable constant gauge transformation, 
it can be characterised by ~[~,~=] pra = 0  and 

~ = exp[2~'i diag(m,..., 0,)1, (2) 
pl _< . . .  _< P ,  _< p n + l - l + p l .  

Using the classical scale invariance we can always 
arrange fl = 1, as will be assumed throughout.  A 
remarkably simple formula for the SU(n) action 
density exists [1,2]. 

 FL(x) = log (3) 
¢(x)  = ½t r (A , . . .  A1) - cos(2rrt), 

(o (o- 
r m rm+l ] 8rn Crn 

with rm = ]~-~m] the center of mass radius of the 
mth constituent monopole, which can be assigned 
a mass 8~r2Um, where um---p,n+l-Pro.  Further- 
more, cm -- cosh(2rvmrm), Sm - sinh(2~rvmrm), 
rn+l =-rl and fin+] = & .  

*Talk presented by the last author. 

2. M o n o p o l e  c o n s t i t u e n t s  

These generaiised caloron solutions can be 
found [3] using a combination of the Nahm trans- 
formation [4] and the Atiyah-Drinfeld-Hitchin- 
Manin (ADHM) construction [5]. The latter is 
mainly needed to resolve the delta function singu- 
larities that  arise in the Nahm transformation, al- 
though other methods were developed as well [6]. 

The Nahm equation for these charge one in- 
stantons reduces to an abelian problem on the 
circle, parametrised by z rood 1, 

m 

giving Aj(z) = 21riyJm, for z E [Pm,Pm+l]. In 
the monopole literature Aj(z) is usually denoted 
by Tj(z).  Taking one interval in isolation, ap- 
plying the Nahm transformation [4] gives a sin- 
gle static Bogomol'nyi-Prasad-Sommerfeld (BPS) 
monopole with mass proportional to the length 
(Vm) of the interval. Taking lffnl-+ c~ leaves the 
interval ~ul, p,], allowing for the interpretation of 
an SU(n) monopole with Pi specifying the eigen- 
values of the Higgs field at infinity, for which it is 
crucial they add to zero. Indeed, in the periodic 
gauge A0 tends to a constant at spatial infinity. 

Note that we have to order exp(2rripm) along 
the circle to ensure that the vi add to 1, an or- 
dering inherited by Pm when extended to the 
real line by insisting Pkn+m = k + p m ,  for any 
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integer k. Let us pick one to be labelled by 
Pl.  All we can guarantee at this point is that  
~nm= 1 /Jm = g, a n  integer. With Pkn+m = k + # m ,  
we find " + p, ~ m = t  #m+p = t for any integer p. 
A cyclic shift of the labels by p--  - t  proves that  
there is a unique choice of the #m that  satisfy 
eq. (2). It demonstrates why ~7, does play a spe- 
cial role, and in the limit lY-I ~ oo one therefore 
has a static monopole solution [4], which can be 
seen as the composite of n - 1  BPS monopoles 
of mass vm, located at  ~m, for m = 1 , . . . , n - 1 .  
From the general formalism it is clear these n - 1  
monopole constituents are time independent, as 
was verified explicitly for SU(2) [2,3]. Note that  
our argument demonstrates that  for [gm[ --~ co 
with m ~ n, one is left with a gauge field that  
cannot be time independent, even though the re- 
sulting action density is [2]. 

The significance of one constituent carrying a 
time dependent field lies in the fact that  the n 
constituent monopoles form an instanton, and the 
topological charge can be associated to the so- 
called Taubes-winding [7], described by a time 
dependent (gauge) rotation, going full circle when 
t progresses over one period. For SU(2) this can 
be read-off from the explicit expression for the 
gauge field [2,3]. We thus conclude tha t  the con- 
stituent located at ft, is the one that  carries this 
Taubes-winding, even though its action density is 
time independent for well-separated constituents. 
This conclusion can also be drawn from the for- 
malism developed in ref. [6], see also ref. [8]. 

< A , A ,  . . .  ,4mlwm(z)>) ,  (6) 

where the spinors vm and Wm are defined by 

v~ (z) = - w  2 (z) = sinh (27r(z-#m)rm),  

v ~ ( z )  = w ~ ( z )  = c o s h ( 2 7 r ( z - # m ) r m ) .  (7) 

For the zero-mode densities we find 

I z(x) I s = L (z, z), (s) 

derived exactly as for SU(2) [9], not repeated 
here. With the gauge field in the periodic gauge 
one has, ~ z ( t + l , ~ )  = exp(2~iz)¢z(t ,~) .  To ob- 
tain the finite temperature fermion zero-mode one 
puts z -- ½, whereas for the fermion zero-mode 
with periodic boundary conditions, relevant in su- 
persymmetric applications, one takes z -- 0. 

In figure 1 we show a typical SU(3) caloron, 
illustrating that  also for n > 2 the fermion zero- 
modes are localised on one of the constituents. 
This localisation can be established easily in the 

3. F e r m i o n  z e r o - m o d e  

The basic ingredient in the construction of 
caloron solutions is a Greens function defined by 

(D2+r2(x;z)T~m~m(z))]x(z  , z ' ) = ~ ( z - z ' ) ,  (5) 

where D . . - - (2 r i ) -10z - t ,  r2(x; z ) - - r 2 ( x )  for z • 
[pro,pro+l] and 6re(z) = ~(Z--pm)lffm--ffm--11/27r. 
A similarity with the impurity scattering problem 
allows for a straightforward solution [1], which we 
present here for the case that  P m <  z ~ < z < P r n + l  

I x ( , Z ' ) )  (extended to z < z' by f x ( z ' , z )  = ^* z 

t ~re2WIt(*-*l) fe_2~it f z ( z , z  ) =  ~ ~, sinh (27r(z - z ' ) rm)+ 

Figure 1. The action densities (top) for the 
SU(3) caloron, cut off at 1/(2e), on a logarith- 
mic scale, with (/~1,/~2,#a) = ( - 1 7 , - 2 , 1 9 ) / 6 0  
for t = 0  in the plane defined by/71 = ( - 2 , - 2 , 0 ) ,  
~72 = (0,2,0) and if3 = (2 , -1 ,0 ) ,  for/3 = 1, with 
m a s s e s  8~2vi ,  (t/ l ,  l/2,1/3) ---- (0.25,  0 ,35 ,0 .4 ) .  On 
the bottom-left is shown the zero-mode density 
for fermions with anti-periodic boundary condi- 
tions in time and on the bottom-right for periodic 
boundary conditions, at equal logarithmic scales, 
cut off below 1/e s. 
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limit of large [ff~ffi+l[ for all i, in which case one 
finds, when z E [~m,Pm+l], 

L ( z, z) =sinh[2~r( z -  pm )r'~] sinh[27r (p,~+l-z)rm] 
rm sinh[2rVmrm]/2~r 

making explicit that the location of the zero-mode 
is determined by the interval that contains the ap- 
propriate value of z. From eq. (2) it follows that 
Pl < 0 <Pn,  such that the periodic zero-mode is 
associated to the static constituent at fire, with 
p m <  0 < Pm+l. This is precisely the condition for 
the existence of a zero-mode given by the Cai- 
lias index theorem [10] (see also the appendix of 
ref. [11]). Due to the static background (for well- 
separated constituents), time dependence of the 
zero-mode would be of the form exp(21rikt) for k 
integer, shifting z -- 0 by k, out of the interval 
that allows for a zero-mode. 

Allowing for k = 4-½, for which exp(27rikt) turns 
the periodic zero-mode anti-periodic, we can have 
situations where this anti-periodic zero-mode is 
associated to one of the static monopole con- 
stituents. A specific example for SU(3) where 
this occurs is (~/1, P2, P3) = (-0.48, -0.03, 0.51), 
yielding (u~,u2,v3) = (0.45,0.54,0.01). Both the 
periodic and the anti-periodic zero-mode are as- 
sociated to the 2 nd constituent. We note that, 
apart from the fact that the 3 rd constituent is 
nearly massless, both zero-modes are very broad 
since min(z-p2 ,  P 3 -  z ) =  0.03 for z = 0 and 0.01 
for z =  ½. For SU(2) z = 0  is always midway 
between #1 and P2 and z = ½ midway between 
#2 and P3 = l + p l ) .  When z coincides with Pi, 
the zero-mode is no longer normalisable, which is 
the origin of the delta function singularities in the 
Nahm transformation. 

4. Conclus ions  

In conclusion, for well-separated constituents 
the fermion zero-mode is localised to a single con- 
stituent. For SU(2) the anti-periodic zero-mode 
is always associated to the constituent that car- 
ries Wanbes-winding [9]. For SU(n  > 2) this is 
also typically true (see fig. 1), in particular when 
well localised, something that may be significant 
for developing a model for the QCD vacuum that 
combines monopoles and instantons [2,3,9]. How- 

ever, exceptions exist where both the periodic and 
anti-periodic zero-mode are associated to (possi- 
bly the same) static constituent(s), although this 
tends to be accompanied by nearly massless con- 
stituents, and rather delocalised zero-modes. 
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