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We discuss the (causal) structure of a recently found black hole solution of eompactffied d = 11 supergravity. It is 
shown that the singularity is in fact lightlike and coincides with the horizon. Consequences are that the Hawking tempera- 
ture is undetermined and that there is no other universe connected to the singularity. 

In a previous paper in collaboration with P. van 
Nieuwenhuizen [ 1 ], we have constructed a number of  
black hole solutions o f d  = 11 supergravity compacti- 
fled to four dimensions over a seven-sphere. These 
solutions tend asymptotically to the well known 
Freund-Rubin  [2] or Englert [3] solutions but near 
the core of  the black hole they differ substantially 
from the conventional Schwarzschild or Reissner-  
NordstriSm solutions. In this letter we discuss in de- 
tail the core structure of  the solution which tends 
asymptotically to the Freund-Rubin  solution (case 
II in ref. [1 ]) and reveal some novel features, notably 
the existence of  a lightlike singularity. 

As a starting point the following ansatz for the 
metric was considered: 

- d s  2 = - B ( r )  dt 2 + A (r) dr 2 + r2(d[22) 2 

+ R (r)2(d~7) 2 , 

(d~n) 2 = d e  2 + sin2 c n ( d ~ n _ l )  2 . (1) 

It describes a static metric with R 1 × SO 3 X SO8 sym- 
metry. For the three-index photon field AMN P of  
d = 1 1 supergravity we choose a Freund-Rubin  an- 
satz [2]: 

Fmnpq = ib (r) emnpq , (2) 

where b is allowed to depend on r and m, n, p and q 
are four-dimensional fiat indices, the other compo- 
nents of  F a r e  put equal to zero. For large r we want 
the extra seven-dimensional space to be compact with 
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radius R~,  which implies that b a n d R  have to go to 
constants related by: 

b 2 = ~ R 7. 2 . (3) 

The only nontrivial Maxwell equation is integrable and 
yields the relation bR 7 = constant. So that after rescal- 
ing the variables, such that R** = 1, one has that (the 
sign of  b is irrelevant): 

b 2 = 3--~12 R-14  . (4) 

This allows us to eliminate b from the Einstein equa- 
tions. The Einstein equations provide us with three 
independent equations for A, B and R. For reasons 
which will become clear shortly we choose the follow- 
ing particular combinations: 

A' /A  + B' /B = (7rR"/R)/(1 + 7rR ' /2R) ,  (5) 

A' /A  - B ' / B  = (2/r)(1 - A ) +  14R'/R - 24rA/R 14, (6) 

A = r[r(ln R ) ' ] '  (7) 

• [ - r ( ln  R)'(1 + 12r2R -14) + 6r2(R - 2 - R - 1 4 ) ]  -1 .  

Two remarks are in order: 
(i) From (5) and (6) B'/B may be eliminated. Com- 

bining the remaining equation with (7) gives a single 
third order differential equation for R, which is 
rather easy to handle numerically. 

(ii) Eq. (5) is interesting. For the ordinary Schwarz- 
schild or Reissner-NordstriSm solution the right-hand 
side vanishes, implying that A B  = constant• This rela- 
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tion has an important  consequence for the horizon 
(B = 0) and singularity (A = 0) structure, namely that 
they cannot coincide. It is exactly because of  the fact 
that in the present case the right-hand side of  (5) does 
not vanish that new possibilities do arise. 

An expansion around the asymptotic F r e u n d -  
Rubin solution reveals that the solution contains two 
free parameters, apart from the overall scale. Namely 
a mass parameter m and a "charge" q (we will com- 
ment  on the quotat ion marks later) 

R = 1 + q r - 6 [ 1  l s ~ - 2  - ~ .  + ½mr -3+ O(r-4) ]  , (8) 

A = [I -(2m/r)+4r 2] -1  { 1 - 4 9 q r - 6  [1 + O( r -2 ) ]} ,  (9) 

B = [1 - (2re~r) + 4r 2] 

X (1 - ~qr -6[1  - (3m/r )+O(r-2)]} .  (10) 

For  m = 0 one can even calculate the linear term in q 
for R exactly: 

aR/aqlm=O,q=O = (1 + 4 r2 ) -3F(3 ,3 , t~  ;(1 + 4 r 2 ) - 1 ) ,  

(11) 
where F is the hypergeometric function [4]. One sim- 
ply uses the fact that for q -> 0, A is known, then (7) 
reduces to a linear second order differential equation 
for 8R/aq Iq=o- 
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Note that the 4r 2 in the prefactor of  A and B 
comes from the cosmological constant which is in- 
duced by the nonvanishing asymptotic value of b in 
(3). It is in fact possible to make the physical cos- 
mological constant zero, by adding a (fine tuned) cos- 
mological constant A = 4 to the eleven-dimensional 
lagrangian [ 1 ]. This term breaks supersymmetry and 
also alters the asymptotics ( 8 ) - ( 1 0 )  in an essential 
way: instead of  power corrections one obtains expo- 
nentials: 

R = 1 + qr -(l÷4m) e x p ( - 4 r ) [ 1  + O(m2+ 1)/r] . (12) 

Also here we can find an exact expression for m = 0: 

8R/aq Im=0,q=0 = r -1  e x p ( - 4 r ) .  (13) 

Of course the leading asymptotic form for A and B is 
given by B = A  -1  = 1 - 2m/r. 

We have numerically integrated the system ( 5 ) - ( 7 )  
for various values of  the parameters m and q. In fig. 1 
we have plot ted the solution with m = 100 and q = 
500. This example is representative for the generic 
case where q > 0 , 1 .  In fact for decreasing values of  q, 
A (r) becomes more and more peaked approaching the 
solution Aq= 0 which has a singularity (horizon) as indi- 

%1 The case q < 0 exh~its a singularity inA at a finite value 
of r. This case is presently under investigation. 
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Fig. 1. The solution for m = 100 and q = 500. The qualitative features which hold for all solutions with q > 0 axe that: (i) A(0) 
= 0 (horizon), (ii) B (0) = 0 (singularity) and (ili) R (0) = o o .  
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cated. In the limit q $0 the solution behaves rather 
strange: A and B vanish inside the horizon whereas 
d In Rid  In r becomes a step function located at the 
horizon. This limiting behaviour differs essentially 
from the other (exact) q = 0 solution namely the 
F reund-Rub in -Schwarzsch i ld  solution where R -- 1 
for all r and A and B as in the usual Schwarzschild 
solution. Note that for m = 0 this strange behaviour is 
absent (except  at the origin itself). Furthermore all 
these properties are also valid for the case with vanish- 
ing physical cosmological constant  in particular near 
r = 0 the solution behaves qualitatively as in fig. 1. I t  
is also worth noting that the solution is very different 
from the usual Reissner-Nordstr~Sm solution with a 
charge q [5]. I t  is well known that this solution has 
two horizons for q < m which "annihi late" at q = m. 
For  q > m the Reissner-NordstriSm solution exhibits 
a naked timelike singularity and we will point  out next  
that this is different from the case we are discussing. 
Let us consider our solution for any q > 0, it  has no 
singularity or horizon for a finite value o f r .  For  r = 0 
we have however both a horizon (B = 0) and a singu- 
lari ty (A = 0). One could say that we are dealing with 
a "t ightly dressed" singularity. In view of  eq. (5) this 
is possible exactly because the radius of  the compact  
space tends to infinity for r ~ 0. 

[At this point  it is worth observing that R starts 
deviating from its asymptotic  value at the location o f  
the would be horizon (r -~ m), which can be much 
larger than Roo (i.e. the Planck scale).] 

In order to analyse the causal structure of  the solu- 
tion at the origin we make an expansion around the 
origin and introduce some suitable coordinate system 
[5] (a la Kruskal or Penrose). The numerical results 
show that the quanti ty d In R / d  In r tends to a con- 
stant: 

- d  In Rid  In r lr=0 = 0 < ~ (14) 

(for the value O = 2/7, the denominator  in the right- 
hand side of  (5) would vanish, this is what happens if  
q $0, leading to the peculiar behaviour pointed out  
before). From (7) we find that A tends to zero and 
from ( 5 ) - ( 6 )  also B has to go to zero and one easily 
finds: 

A = ar a + O(r2a), B =/3r b + O(r2b),  (15) 

with 

~ ( a - b )  = 1 - 7 0 ,  ~ ( a + b ) = 7 ( o + l ) o [ ( 2 - 7 0 ) . ( 1 6 )  

The values of  O, a and/3 are of  course determined by 
the parameters m and q. Fit t ing the numerical solu- 
tion with m = 100 and q = 500 for small r to (15) we 
found: 0 = 0.1955, a = 2.222, b = 2.959, a = 0.1317 
and/3 = 0.6144. These results are in excellent agree- 
ment with eq. (16). 

Focussing on the t - r  plane we first introduce con- 
formally flat coordinates: 

1 / 2 0 f  ( = _r-7O F = 7(3/c 0 B/A) 112 drr_.O , 

t-= (/3/or) 1/2 7ot ,  (17) 

which brings the line-element ha the form: 

ds 2 = [-a//3(70)21 B ( - d ?  -2 + dg2). (18) 

Since we are essentially only interested in the behav- 
iour for r ~ 0 we restrict ourselves (by rescaling s) to 

the metric: 

ds -2 = - r b ( - - d ?  -2 + dg2), g = - r  -70 . (19) 

To obtain a clear picture of  what happens at the origin 
we should find coordinates for which the factor in 
front in (19) does not  vanish for r ~ 0. As usual we 
first go to advanced and retarded null-coordinates: v = 
?-+ ~and  w = ? - -  ~and  subsequently define the Krus- 
tal coordinates g = exp(7"b) and ~ = - e x p ( - T w ) ,  
where T is a constant. The metric (19) now becomes: 

~-2 = r b exp(2~r-7O) d~ d ~  . (20) 

Alternatively one may think in terms of  new timelike 
and spacelike coordinates Y = -~ (~ + ff~) and ~ = 
1 (~_  ~)  where d~ d ~  = d.22 - dy2.'The origin corre- 

sponds to the null-lines ~ -+ 2 = 0, because y 2  ~2 = 
- e x p ( o -  w) = - e x p ( - 2 7 ' r - 7 ° ) .  Finally defining the 

Penrose coordinates 0 = arctg (g) and ~ = arctg (w~) 
we arrive at the Penrose diagram as drawn in fig. 2. 
From this picture it is clear that the space- t ime  we 
are considering does not  have any causal inconsisten- 
cies. The singularity at r = 0 corresponds to a lightlike 
singularity, a novelty which nicely complements  the 
well-known Schwarzschild solution with a spacelike 
singularity, and Reissner-NordstriSm solution with a 
timelike singularity. The coincidence of  the horizon 
with the singularity has another important  conse- 
quence, namely that it is not  possible to analytically 
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r=o / ~ r = o =  
t =+o= t =+=0 

t = const. 

r = const. 

r--o "% 
t = - o a  t = - 0 0  

Fig. 2. The Penrose diagram for the solution. The singularity at 
r = 0 is lightlike and coincides with the horizon. 

continue the coordinates beyond r = 0; there is no 
other universe connected to the singularity. 

We now turn briefly to the question of  the Hawking 
temperature [6], which is related to the occurrence of  
an horizon. To determine this temperature it is crucial 
that a coordinate system exists which is well behaved 
over the horizon. The easiest way to determine what 
the temperature would be, is to continue these coor- 
dinates to imaginary time. The periode then equals the 
inverse temperature (see ref. [7] however). 

For the Schwarzschild and Reissner-NordstrSm 
solution the constant T in the transformation to Krus- 
kal coordinates is uniquely fixed by demanding the 
line element to be regular across the horizon. In our 
case there is no choice for the value of  T for which 
this can be achieved, leaving the Hawking temperature 
undetermined. One might argue that this turns the 
solution in a "quantummechanically naked" singularity. 
In the conventional solutions the distance of  the sin- 
gularity to the horizon is much larger than the Planck 
length. This justifies the, as far as gravity concerns, 
(semi) classical calculation of  the Hawking effect. For 
a better understanding of  the case we are discussing 
where horizon and singularity coincide, knowledge 
about quantum gravity is indispensable. 

Let us finally come back to the interpretation o fq  

as a charge. Due to nonlinearities the notion of  charge 
cannot be defined through flux conservation, how- 
ever it can always be done through its coupling to 
external test-particles. Following Kaluza and Klein [8] 
in their definition of  the conventional charge Q, we 
will show that there is an interaction proportional to 
qQ2. Let us first consider the case of  global compacti- 
fication, q = 0, R -- 1. Kaluza and Klein [8,9] intro- 
duce electromagnetic fields as off-diagonal elements 
in the metric. This reproduces correctly the Maxwell 
equations and the coupling to gravity. In order to 
reproduce the Lorentz force which a charged test- 
particle feels, one simply chooses the angular momen- 
tum in the extra dimension(s), which is a constant of  
the motion, proportional to the charge Q. Without loss 
of  generality we can restrict the particle to the equa- 
tors of  $2 and $7, and the equation of  motion becomes: 

(dr/ds) 2 = g2IAB - (1 + I~2/R2)/A - [2 /Ar2 ,  (21) 

where the constants of  the motion are: 

= a  d t / d s ,  [ = r  2 d¢/ds,  ~ = R  2 d~7/ds .  (22) 

Since l~2[R 2 is constant we can define the proper time 
to be r = s(1 + 152]R2) 1/2 and we find: 

(dr/dT") 2 = eZ/AB - 1/A - 12[Ar 2 , (23) 

with of  course: 

e = B  dt]dr and l = r  2 d¢/d~-. (24) 

This amounts to the same result as the Kaluza-Klein 
approach where the line element is restricted to four 
dimensional space-t ime (if no electromagnetic fields 
are present). 

We did this trivial exercise in order to deal with the 
case of  non-constant R where the extra seven dimen- 
sions are treated as real physical degrees of  freedom. 
In the case of  local compactification/~ is still constant 
and can therefore be identified with ~ • Q (5 some 
constant). Therefore the equation of  motion becomes 
( R ~  = 1): 

(dr/dr) 2 = e2[AB - 1/.4 - 12]Ar 2 

+ (62Q2/A)(1  - l /R2) ,  (25) 

is some constant, which might depend on Q2 
through the scaling of  the proper time. At the present 
level of  discussion this is irrelevant. Substituting the 
asymptotic expressions (8) or (11) for R in (25) gives 
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in the classical domain the following change in the 

effective potential:  

AV= -(28202q/A) bR/Oq [q=0, 

which is attractive (for q > 0), independent of  the 
sign of  the charge of  the test-particle and proport ional  
to the "charge" q of  the black hole. Since no explicit  
electromagnetic field is present gravitational and elec- 
tromagnetic interactions get mixed up in the case of  
local compactification. This is unification in the true 

sense of  the word. 
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