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We discuss the contribution of surviving extrema for the action in N — e Yang—Mills theories in weak coupling and their
relevance for factorization. In particular we discuss the role of fluxons in the twisted Eguchi—Kawai model.

Recently there has been much interest in large-N
gauge theories [1], because the reduction [2] of a
large-V lattice gauge theory to a one-point lattice,
makes numerical and hopefully analytic calculations
feasible. Factorization is crucial, both for simplifying
the original large-V theory (only planar Feynman dia-
grams contribute) and for the reduction (the
Schwinger—Dyson equations for the Wilson loop are at
N = = a closed set of equations [3]). What one wishes
to understand is confinement and hopefully N = oo is
not too crude an approximation to obtain information
for finite V.

Tomboulis [4] claims to have proved confinement
for all coupling 8 and d < 4 in SU(2), however the
mechanism for confinement is still unclear. One be-
lieves that Z,,-vortices are responsible for confinement
[5,6]. It is therefore natural to look for Z,-type con-
figurations which might survive for N - oo, either in
the continuum [7] or on the lattice. In the latter case
they were studied for the twisted Eguchi—Kawai [8]
(TEK) model in ref. [9]. These configurations are in-
stanton-like and survive for V—> oo, because their ac-
tion is proportional to 1/N. Coleman’s [10] argument
tells us that ordinary instantons cannot contribute to
the Wilson loop, this is however no longer valid for the
instantons on the torus with nontrivial “twist” [11].
So there is still a possibility that configurations with
nontrivial Z, structure contribute to confinement. It
is the purpose of this letter to show that at least for
TEK, fluxons [9] do not change perturbative results.

As was pointed out by Greensite and Halpern [12]
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it is very unlikely that Z,-type configurations play an
essential role for ;V = o= confinement. Their argument
is based on the fact that factorization implies:

{try U(C)) = [{trp U(C))2 1)

where tr () U(C) is the Wilson loop in the adjoint
(fundamental) representation. This means that the
string tension in the adjoint representation is twice
that in the fundamental representation. The adjoint
representation is insensitive for Z,, and indeed for fi-
nite NV adjoint quarks are not confined. So if confine-
ment persists it is probably of a different nature for N
— oo, This makes it very unlikely that the above men-
tioned surviving extrema will be responsible for N = oo
confinement.

We will now show that they have no influence for
N — o< if we insist on factorization for the non-pertur-
bative sector. The argument is valid at least for fluxons
in TEK. Let the extrema be numerated by k, a posi-
tive integer, with action S;. k represents the ordering
of the extrema: Sy =8, for k > [. Different extrema
(disconnected in configuration space) with the same
action will of course have different k-values. Extrema
are said to survive if:

lim NS, <o, )
N—ooo

since then the factor exp(—8S}) has a non-vanishing
N - oo limit, where /N is kept fixed. Denote by (O,
the expectation value of the operator O, expanding
around the kth extremum:
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_IDABO(A) exp {—B[S(A) — Si]}

/DA® exp {—B[S(4) — Si]} @

k

where A%) is the expansion of the appropriate field
around the kth extremum. Furthermore the weight of
each configuration is given by:

- (fDA(") exp (—B[S(4) — 5,1}
k /DAO exp[—BS(4)]

)eXP(—BSk) @)

The factor between parentheses is a perturbative quan-
tity (of order 1 if the number of zero modes for the
kth instanton equals that of the ground state). By fac-
torization we will mean the following: There is a set of
operators, such that for any pair 0 and 0, in this set
{0,0,)={01)0,). This should of course at least be
true in perturbation theory. For Yang—Mills theories,
O will be a Wilson loop operator. A necessary condi-
tion for factorization is that the variance of an opera-
tor O is zero:

(0% -0 =0. (5)

If we work out the expectation values in the steepest
descent approximation [12] we find *1:

©%) — (2 = 2 W,((0 — (0% / 2w,

2
_ 2
+;§z W, W,(OY — ©O)) / (Ewk) : (6)

Since the integration measure in (3) is positive definite,
we have for any positive definite operator O, i.e. O(4)
> 0 for all 4, that (0) > 0. So W, (O — 0))?),

Wy W, and (O, — (O%)? are all positive definite and
(5) implies for all k¥ with W, # 0 (W; =0 extrema do
not contribute anyhow):

O) =0, . (7)

And this implies that the extrema have no influence (in
weak coupling) since from (7) we deduce:

(0)= 0 . (®)

{0}, is the purely perturbative expectation value and
thus all operators satisfying factorization perturbative-
ly also factorize in the non-perturbative sector as soon
as () is valid.

*1.0)= X WO /Wy .
k
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Our findings are therefore consistent with those of
Greensite and Halpern [12]. Also we see once again an
illustration of the fact that a single masterfield in the
sense of Witten [13] does not exist. The N = oo limit
is more like a thermodynamic limit [14], which allows
for different equilibrium configurations, with the same
value in each configuration for macroscopic variables
(the Wilson loops). It is also a simple exercise to show
that “microscopic observables™ of the kind considered
by Haan [14] do not factorize due to the instantons:
O /€0)# 1 + O(1/N). Since for reduced models
factorization for all couplings is an essential ingredient
eq. (7) is a severe constraint on these models and this
is the practical use of our observations.

Let us discuss the situation for the TEK model in
somewhat more detail [9]. The action is given by:

4
_ A
Stpx = ‘H&Zvil tr(1 -2, UUUUD), )

where U, € SU(WV) are the link variables and

Z,, =exp(2min, [N}, (10)

with n,,, the antisymmetric twist tensor with integer
entries (mod V). The for N — oo surviving extrema
(fluxons) are given by the solutions to the equation:

+rrt .
UMUVU“UV = exp(2mmw/N), (11)
and they survive for N - o if:

1

Z“Z;e;u (nw—mw)2=k, (12)

with k an integer. In order that in perturbation theo-
ry, the results of the unreduced model are retrieved,
one demands that the pfaffian of n satisfies:

PE(1) = § €uvopMunlap = NV (13)

which also guarantees a zero action solution of eq.
(11) withm, = n,,,,. Eqs. (11) and (12) also in gener-
al enforce Pf(m) = £N. Then all solutions to (11) for

a given m,,, are unique: that is up to a gauge (U”

- QUMQ‘”) and multiplication with an element of the
center Zy(U, > Z,U,). There is a subgroup H of Z}}
containing N2 elements, all equivalent to 1. To be pre-
cise for Z,, € H there exists an Q € SU(V) such that
Z,U, = QU,Q* for all u (this is independent of the
choice of U,,). This result is not in ref. [9], but will
be published elsewhere. The solution manifold consists
therefore of N2 disconnected gauge orbits, labelled by



Volume 140B, number 5,6

elements oY Z?V/H. The closed Wilson loops do not

feel the degeneracy. Since it is the same for each
fluxon we can ignore this N 2-fold degeneracy. In the
gaussian approximation (using eq. (16) of ref. [9}) one
then finds:

O, =Om[1+00/N)], (14)

where now the subscript n — m labels the different
fluxons (S,,_,,, = 8n2k/N, for N large, see (12)) and
the superscript denotes the twist tensor of the model
(see (10)). Perturbatively the 1/N corrections corre-
spond to the finite size corrections of the effective lat-
tice spanned by the four four-vectors k(") waﬁnaﬁ
{8]. For the fluxons these effective lattlces dev1ate
typically O(1/N1/2) from the ground state effective
lattice, which guarantees for large V:

o =on. (15)

Together with (14) this implies (7) and thus factoriza-
tion. To give an explicit example, consider the sym-
metric twist {8]: ny,=Lv<u,N= L2. The effective
lattice is square with sides of length L. For the first
fluxon in table 1, ref. [9] :

m,, —n

uv uv=6p1(6v2 +6u3)'5u1(6y2 +6u3)’
with §; = 872 /N, the effective lattice is spanned by:
{(Ly 19 #1’ O)’ (09L + 1’ '—la l)a

(09 I,L - 1’ 1)’ (Oa Oa OyL)} s

which is indeed close to a square L4 lattice. (Note that
for the fluxons Wy, = . exp(—8m2kp/N), with uy, the
number of solutions to eq. (12)).

Let us discuss in how far the above results can be
generalized to any other N — o theory. First we have
to stress that the result is only valid for weak cou-
pling, or equivalently for small Wilson loops. Increas-
ing the size of the Wilson loop corresponds to an in-
creasing effective coupling. Our analysis makes one
suspect that surviving extrema will not have a signifi-
cant contribution. The weak coupling computation is
however of practical importance as a test for factoriza-
tion, which is an essential feature for reduction to
hold. It is crucial to realize that W, in general also in-
cludes the contribution of approximate extrema
(“multiple tunneling”).

There are two ways out if one wants to avoid our
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results. It was implicitly assumed that W, and Z;- o W,
have a smooth and finite limit for N - e, It is in prin-
ciple however possible that especially ZW;. has no fi-
nite limit. In that case one replaces W by Wk W/
Zio W, which certainly is finite for N > e with

Zr= =1, but WO = 0. So we have instead of eq. (8):
<0) = (O)k, with k # 0 and W,, # 0 but otherwise k is
arbitrary. Again the expectation value is purely pertur-
bative but now in a nontrivial background. The second
assumption made was that the set of §; does not have
a limit point. It is beyond the scope of this letter to
discuss what conditions factorization impose in the
case that such an assumption is not made.

There is an alternative for the TEK, namely the
quenched Eguchi—Kawai [15] (QEK) model, for
which surviving extrema were found by Neuberger
[16] and investigated in more detail by Parsons [17].
He claims that the extrema can potentially contribute
to confinement, in particular by the first way out of
eq. (8), as described above *2. The extrema seem to
have no connection whatsoever with those of the TEK
model. This favours the assumption, also put forward
in ref. [17], that some or all extrema in both reduced
models are artefacts of the reduction. (To reassure the
reader: The apparent discrepancy between TEK and
QEK (compare eq. (4.3) of ref. [17]) only occurs for
large Wilson loops, where weak coupling is not a good
approximation.)

So we conclude that the confinement mechanism is
probably different for N — oo, Monte Carlo data [18]
seem to indicate that the string tension tends to a con-
stant for N = oo, but this is by no means conclusive. If
we want to save factorization it might just as well be
possible that confinement does not survive for N — oo,
This would be signalled by a zero string tension at N
= e, which would fit more naturally to the equality of
fundamental and adjoint string tensions. Finally one
should keep an open mind for the possibility of viola-
tion of factorization especially in the cross-over region
from weak to strong coupling. Checking factorization
[19] is therefore important in the light of our investi-
gations.

We thank Mark Gross, Frans Klinkhamer,
Gerard ’t Hooft, Jan Smit and Sander Bais for discus-

*2 We thank the referee for pointing out that this is what was
meant in ref. [17].
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