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We interpret in terms of “basic” cohomology the recently proposed supersymmetric, supergauge invariant formulation of top- 
ological Yang-Mills theory. Our inte~~tation shows that this fo~ulat~on leads to the correct observables. 

1. Intuition 

In a recent series of articles [ 1,2], Witten investi- 
gates the expression of various topological invariants 
in terms of local field theory. The first examples of 
this sort we know of are due to Schwarz [ 3 ] who gives 
a field theory expression for the Ray-Singer analytic 
torsion [ 4 1, and are related to the quantization of 
differential forms [ 5 1. The situations considered by 
Witten are of a more exotic type and lead to essen- 
tially non-linear theories, to be treated in the weak 
coupling regime. In principle, to obtain the sort of 
results one expects, a rigorous treatment ofthe renor- 
malized perturbation expansion ought to be suff~- 
cient for a rigorous mathematical construction. Here, 
we shall be concerned with gauge fields and the re- 
centiy discovered Donaldson invariants [ 6 1. 

The following construction owes much to seminars 
by Singer, Baulieu [ 7 ] and Braam [ 8 1. However, 
since local field theory is to be used [ 9 1, we find it 
necessary to characterize the model by a complete set 
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of Ward identies. We believe that ref. [ 7 1, as we11 as 
subsequent proposals [ 10 1 are incomplete in this re- 
spect. The solution is to be found in an article by 
Home [ 111. The purpose of this note is to explain 
why, in more geomet~cal terms. 

2. The differential algebra 

As suggested in Witten’s paper f I ] (eq. (2.41) ) 
and emphasized in ref. [ 7 1, one wishes to gauge-fix a 
topologi~l inv~ant, e.g. 

where F( (A) is the curvature of a connection A on a 
principal G-bundle P(M, G), over a compact 4-man- 
ifold M, without boundary, and tr is an invariant po- 
lynomial over Lie G. The group G is assumed to be 
compact. 

The action $i:,,, is, by essence, invariant under ar- 
bitrary variations ofA: 
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~iA=~,. (2) 

From now on, all fields are differential forms on M, 
taking values in ad (Lie G).  One insists on gauge-fix- 
ing S~,~, leaving the gauge freedom pending till the 
end (because of the known Gribov difficulty), local- 
izing the system on the self-dual connections. The 
corresponding gauge fixing term is 

S~J>= ~tr(b^b-b^F--~^(D~)-), (3) 
M 

where F - is the antiself-dual part ofF(A ) - for some 
metric g on M -, b and ~ are antiself-dual two-forms 
and (De/)-  is the antiself-dual part of  D~u, the co- 
variant differential of the one-form ~u. 

The new action S~,v+S ~) is invariant under the 
Slavnov symmetry: 

s,A=~,, &~ =0 ,  &~=b, &b=O (4) 

and satisfies 

S~J)=sl f t r ( ~ ^  ( b - F - ) )  . (5) 
M 

It is still gauge invariant, i.e. invariant under 

~A=DOg, 8~u= [~u, 09], (6) 

8 # = -  [o9, #] ,  8b= [b, o9], (7) 

where we Lie f¢, f¢being the gauge group of P(M, 
G).  This yields the nilpotent s~ operation: 

s2A=~u-Dro, s2¢/=[¢,o9], s ~ = - [ o g , ~ ] + b ,  

szb=[b, og], s2o9=-  ½ [o9, ¢o] . (8) 

The action S~nv+S ~ is invariant under s2 and does 
not depend on co (the Faddeev-Popov ghost for Lie 
if). Except for the f b ^ b term, it is invariant under 
(tp is odd) 

8b= [~, ~], 8¢/=D~, (9) 

which yields the nilpotent operation s (now with 
even): 

sA=~u-Dog, s~= [~u, og]-D~ , 

s~= - [o9, t~] +b, sb= [b, o9] - [~, ~] , 

srp= [rp, o91, s o g = -  ½ [o9, ¢o1 + ~ .  (10) 

It is easy to modify S (~] in such a way that it is 

invariant under (10). Following eq. ( 5 ) we find 

f t r ( ~ ^  ( b - F - ) )  ) = S  

M 

= f  t r ( b A b - b ^ F - - ¢ l  ^ (De/)-  + q ^  [~, ~] ). 

M ( 1 1 )  

Notice that in eq. (10), sb needs a ~0 dependent term 
in order for s to be nilpotent. The ~ invariance can be 
gauge fixed in a gauge invariant way using the gauge 
function D*~/: 

tr(*]~^ D*~-k*0 ^ (D*D~o+ [*~/, ¢] ) ) . 
M 

(12) 

Including $<2) in the action, one gets the Slavnov 
symmetry defined by (10), together with 

s0= / /+  [0, o9], s / / = -  [o9,//] + [~, 0] , (13) 

such that we have the following expression: 

t" 
~<2) =s  ~ tr(*0 ^ D*~,+ ~^  ( b -  F -  )) .  + 

M (14) 

A few remarks are in order: 
(i) S i , v + ~ ' ) + ~  ~2) is not quite the most general 

o9 independent, gauge invariant, renormalizable ac- 
tion invariant under s - actually of the form Si.v + sSgf: 
one may add an extra term compatible with ghost 
number neutrality and renorrnalizability as in refs. 
[ 1,2,10,11 ] and of the form s f tr(//[~0, ¢~] ). Both o9 
independence and gauge invariance are essential. 

(ii) Changing generators according to 

~u' = ~ - D o g ,  b' = b -  [o9, ~ ] ,  

¢ =~-½ [o9, ~ol, # '=#+[0,  og], (15) 

the s-operation assumes the form 

sA=~u', scz '=0,  s~=b',  sb'=O, 

sog=O', s ~ ' = 0 ,  sO=//', s / / ' = 0 .  (16) 

It therefore has vanishing cohomology as well as van- 
ishing cohomology mod d. The desired cohomology 
[ 1,2 ] is, however, not the local cohomology ofs  mod 
d, but its restriction to o9 independent, gauge invar- 
iant objects. What is involved is equivariant cohom- 
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ology [8] ~, or rather its original form, namely "ba- 
sic" cohomology [ 13], which is exactly adapted to 
the present local field theory context, as we shall see. 

(iii) It is interesting to observe that s can be split 
into a sum of two anticommuting differentials and 
that the algebra can be cast in a supersymmetric form, 
which is d i s t i n c t  from that of ref. [ 11 ], if we insist 
that, as we will demonstrate, s generates the super- 
symmetry. However, the superfield content will be 
that of ref. [ 11 ] (without imposing the gauge condi- 
tion to = 0). Details are given in section 4. 

3. The "basic" cohomology of s 

The differential algebra defined by the structure 
eqs. (10) and ( 13 ) has the following property, which 
makes it a differential algebra with an action of the 
gauge Lie algebra; for 2e Lie (~define 

8~u= [~u, 2], 8~A=D2, 

8~b= [b,2], 8 a ~ = -  [2, ~ ] ,  

8 ~ =  [~0, 2], 8~to= - [2, t o ]  , 

8a~= [~, 2], 8~f l=-  [2, f l ] .  (17) 

Define also for 2~Lie if, l~ by 

b A = l~ q/= t.~ tp = t,~ b = l,~ ~o = t~ ~ = t~fl= O,  

l~to=2. (18) 

One can easily check that 

8a =t .~s+ st.~ (19) 

and one has the classical [ 13 ] commutation rules 

[t~,~.]+=0, [~ ,~] -=~t~ .~ l ,  [6a, l~]-=q~,~l, 

[s, la] + =6~, [s, ~z]_ = 0 .  (20) 

This makes {~a, tu12,/~Lie (¢} into a graded Lie al- 
gebra. Recall that S,o,=S~,v+~ ~) + ~ 2 )  fulfils 

sS,  ot =~S,o, =tuS, o, =0, 2,/t~Lie ~ .  (21) 

In technical terms Stot is a "basic" [ 13 ] local func- 
tional for the differential structure (10), (13), with 
the Lie f¢action defined by (17), ( 18 ). 

~ This is an amplification of a remark by Braam (see ref. [8] ). 
See also refs. [ 7,12 ]. 

Now let us turn 2 and / t  into ghosts, in the usual 
fashion (2 odd and # even) and define 

W =~+z ,  (22) 

where ~ and t are obtained by (17), (18) on all fields 
except for A, to, 2 and/t  for which 

W A =  - I )2 ,  Wto= - [2, to] - p ,  

W 2 = -  ½ [ L , q ,  WU= [U,;t].  (23) 

One easily shows that Wz=0.  Adjoining 2 and/ t  as 
new generators to our differential algebra, we still 
have a choice to define s2 and s/t. In particular, if we 
define s on 2 and # by 

s2=/t, s ~ = 0 ,  (24) 

we obtain 

[s, W]+ = 0 .  (25) 

The comparison with the supersymmetric formal- 
ism of ref. [ 11 ] is now straightforward. In terms of 
the primed variables defined in eq. (15), one may 
introduce the superfields 

J x  = A + O~u' , d o = t o + 0 ~ ' ,  

~ = ~ t + O b ' ,  ~ = ~ + 0 / ~ ' .  (26) 

Then one has 

s = 0/00. (27) 

The supergauge transformation ghost 

A = 2 + 0 # ,  (28) 

fulfils W A  = - ½ [A, A ] and s still acts on A by 0/00. 
W acts on all fields by supergauge transformations, 
with ~¢x, ~¢o a superconnection and ~P, • transform- 
ing under the adjoint representation. 

In terms of the unprimed variables the action and 
local cohomology m o d d  are characterized by to in- 
dependence and gauge invariance, as we have al- 
ready remarked. In terms of the primed variables and 
the supersymmetric formulation of ref. [ 11 ], this is 
equivalent to supersymmetry (invariance under 
0/00) and supergauge invariance. So, this equiva- 
lence proves in particular that the supersymmetric 
supergauge invariant cohomology is identified with 
the "basic" cohomology, which is known to be cor- 
rect [ 1,2,7,8 ]. We refer to ref. [ 11 ] for the s-invar- 
iant gauge fixing of W. 
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4. An alternative supersymmetry 

In this section we discuss the alternative supersym- 
metry mentioned at the end of section 2. One may 
split s in eqs. (10) and (13) as 

s = a + w  , (29) 

with 

aA=~,, aqt=0, a ~ = b ,  a b = 0 ,  

aog=~, a~=O, aO=fl, afl=O (30) 

and 

w~'= [~,, a~] -D~ ,  wA= - D o ) ,  

wb= [b, 09] - [~, tp], w~= - [to, ~] , 

w~= [~, o~1, wo~=-  ½ [o~, o~1, 

wO=[¢,o)], w,O=-[o),B]+[~o, Ol. (31) 

One can easily check that a2= w2= [ a, w] + = 0. This 
structure suggests the use of  a supersymmetric for- 
malism. Let 

A=A+Oq/, ~ =  o9+ 0~o, 

~P=~+Ob, tb=O+Ofl. (32) 

Then, in terms of the superfields: 

a = 0 / 0 0 ,  (33) 

and w is a supergauge transformation: 

w A = - D ( A ) D ,  w l 2 = -  ½ [D, ~21, 

w ~ = -  [f~, ~], wt~= [~ ,  ~ 1 ,  (34) 

where the covariant differential D (A) is given by 

D ( A ) ~ = d ~ +  [A, Q ] .  (35) 

Eq. (34) defines a differential superalgebra with a 
super Lie algebra action in terms of 

A=2+Ol~, 2, / teLie ~ .  (36) 

We define 5A according to 

JAA=D(A)A,  J . Q =  [ O , A ] ,  

J .  = [~P,A], J .  = [~b,A] (37) 

and l. according to 

IAA=IA~C=IA(~=O, laI)=A . (38) 

Then we have 

JA = [W, tA ] • (39) 

5. Concluding remarks 

The algebraic set-up proposed in ref. [ 11 ] has been 
shown to describe the "basic" cohomology adapted 
to the characterization of a perturbative treatment 
[9] of the situation described by Witten [1,2] in 
terms of equivariant cohomology [ 8 ] (see also foot- 
note 1 ). There are two heavy technical problems to 
be dealt with: 

(i) Perturbative renormalization theory for a field 
theory associated with an arbitrary compact mani- 
fold without boundary in a particular topological 
sector. 

(ii) The proper treatment of different vacua and 
the inclusion in the s - W  operation of global zero 
modes, that ought to make the theory not completely 
empty. 
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