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Abstract 

Scaling of mass ratios in intermediate volumes, obtained with improved W(2) lattice actions is tested against analytic 
results for the Wilson and continuum action. A new improved action is introduced by adding a 2 x 2 plaquette to the 
Symanzik action. Completing a square leads to a covariant propagator that simplifies perturbative calculations. Data is 
presented on lattices of size 43 x 128, with lattice spacings of approximately 0.02 and 0.12 fermi. For the latter case 
no further improvement as compared to the tree-level action was observed when including the Lepage-Mackenzie tadpole 
correction to the one-loop improved Liischer-Weisz Symanzik action. 

1. Introduction 

Improvement of lattice actions aims at doing Monte 
Carlo simulations on coarser lattices, such that with 
a modest number of lattice spacings the physical vol- 
ume is sufficiently large. But perhaps more impor- 
tantly it should make extrapolations to the contin- 
uum limit more reliable, as has been one of the main 
objectives in the non-perturbative determination of 
the running coupling constant [ 11. Here we consider 
the Symanzik improvement scheme [ 21, which is de- 
signed to remove lattice artefacts by adding irrelevant 
operators to the lattice action, whose coefficients are 
tuned by requiring spectral quantities to be improved 
to the relevant order (on-shell improvement [ 31) . For 
Symanzik improvement to work it seemed that un- 
reasonably small values of the bare coupling constant 
were required. 

Mean field inspired Symanzik improvement [4] 
was introduced to beat the bad convergence of per- 
turbative expansions in the bare coupling constant. In 
particular the Parisi mean field coupling [ 51 defined 
in terms of the plaquette expectation value is seen 

to improve considerably the approach to asymptotic 
scaling. Despite some attempts [6] no good theoret- 
ical understanding for this is available. The tadpole 
prescription also includes corrections [ 41 to the coef- 
ficients in the Symanzik improved action, which can 
be seen as a mean field renormalization of the link 
variables on the lattice. Only phenomenological argu- 
ments have been provided to support this. Standard 
tests in pure gauge theories involve restoration of ro- 
tational invariance [ 41. More involved, but of direct 
physical relevance, are the tests in charmonium spec- 
troscopy [7], used to extract a value of the strong 
coupling constant [ 81. 

We here stress the necessity of improving scaling, 
rather than asymptotic scaling, which in spectroscopy 
is less important since one has to set the scale by one of 
the masses or the string tension. Our study is comple- 
mentary to that of Ref. [ 91. Although one is ultimately 
interested in the infinite volume limit, from the point 
of studying the approach to the continuum limit a finite 
volume provides a useful tool. If improvement fails 
there, it sheds doubt on results in large volumes (when 
successful, however, one does not imply the other). 
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Perhaps a somewhat inappropriate comparison is that 
we consider our study as a well controlled laboratory 
experiment, where conditions are manipulated so as 
to rule out as much as possible external disturbances. 

The setup of this letter is to first introduce and mo- 
tivate the new improved action. It simplifies certain 
perturbative calculations, and provides in part an ana- 
lytic test of improvement in a small volume for which 
we present the effective potential in a constant abelian 
background field. Also the Lambda parameter of the 
new improved action is related to that of the Wilson 
action. We then present our Monte Carlo data at very 
small and intermediate volumes and end with conclu- 
sions. Details of the analytic study will be presented 
elsewhere (preliminary material and some further dis- 
cussion can also be found in two communications to 
conferences [ lo] > . 

2. Square Symanzik action 

There is a large redundancy in choosing an im- 
proved action, when parametrized in terms of Wilson 
loops. We shall use this to allow for a simplified 
“covariant” gauge choice, achieved by adding to 
the Ltischer-Weisz (LW) Symanzik action a 2 x 2 
plaquette: 

(1) 

The ( ) imply averaging over the two opposite direc- 
tions for each of the links, called “clover” averaging 
in Ref. [ 111. Numerical factors were chosen to agree 
with earlier conventions [3]. Note that sometimes 
cp and cg are interchanged in the literature [ 11,121. 
Here q is assigned to the 2 x 2 plaquette. 

The number of parameters required to improve the 
action to a certain order is simply determined from the 
number of gauge and hypercubic invariant operators 
that one can write down up to that order (read off 
from the dimension of the operator). For pure gauge 
theories there is only one operator of dimension zero 
and three of dimension two. One of these is redundant 
as it can be removed by a field redefinition, which can 
also be implemented at the level of the Wilson loop 
representation. It allows one to choose [ 31 c3 = 0. 

As usual we relate lattice and continuum fields by 

U,(x) = Pexp(J:A,(x + +L)&). This gives the 
following expansion for the lattice action [ 11,121: 

S({ci}) = -~(co + 8~1 + 8~2 + 16~3 + 16~4) 

+ 12 (co + 20~1 - 4c2 + 4~3 + 64~4) 

X c Tr(D/,p(x))2 + 0(a8) . (2) 
x,/&v 

To fix the definition of the coupling constant one im- 
poses (CO + 8~1 + 8~2 + 16~3 + 16~4) = 1. Comput- 
ing two particular spectral quantities as a function of 
these parameters allows one to determine these coeffi- 
cients. At tree-level the conventional choice amounts 
to putting CO = 5/3, ct = -l/12 and c2 = c3 = c4 = 
0. The one-loop (O(&) correction to these coeffi- 
cients was computed by Liischer and Weisz [ 31. For 
c4 # 0 a similar calculation is in the process of being 
completed by one of us. At tree-level we have fixed 
c4 by the following requirement. When expanding the 
action to quadratic order in the lattice field qp (x) , de- 
fined by U,(x) = exp(q,(n)), one finds 

s2 = c -3 Tr[co(Qdx) - 4qpL(x))2 
x.p,v 

+2c1{(2+~p>tQ2rw -&qptx>)}2 
+c4{(2+a,)(2+a,)t~~,,q,(x) -avqptx>>}21, 

(3) 
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where a, is the lattice difference operator J&n) = 
p( x + p) - p(x) . If we now choose 

c4 = z*co, 2 z Cl/CO. (4) 

we can complete squares and obtain a simple gauge 
fixing function 

I( 

x q/.&(x). (5) 

It is for this reason we propose to call the new im- 
proved action the square Symanzik action. At tree- 
level one finds 

co = 16/9, cl = -l/9, c2 = 0, 

c3 = 0, c4 = l/144. (6) 

An amusing, and potentially useful feature is that the 
relation QCO = ct is not affected by tadpole correc- 
tions, where one replaces U,(X) by U,(X) /uo, with 
ug the fourth root of the average value of the plaquette: 

ui=Rek-‘Tr 
(tI>* 

Here k is the number of colors. For values of no Z 1 
one easily finds z = -l/( 16~;) andco = l/( 1+4z)*. 

In the covariant gauge the propagators for the ghost 
and vector fields are simply given by 

Ghost : 

1 
P(k) = 

,/Zj c, (4 sin* ( kA/2) + 42 sin* kA) ’ 

Vector : Ppy (k) = 
P(k)&, 

&(I +4.z cos*(k,/2)) . (8) 

It illustrates an important feature of improved actions 
with more than nearest neighbor couplings in the time 
direction: unphysical poles appear at the scale of the 
cutoff, l/a. For low energy physics they are harm- 
less [ 131 in the same way Pauli-Villarsregulator fields 
are harmless at energies below the scale of the cut- 
off. However, on the lattice these spurious poles are 
more cumbersome to handle as they do not simply ap- 
pear in loops (i.e. vertices do not preserve something 
like ghost number). Nevertheless, there is a way of 
separating off their contributions [ lo]. Each of the 
propagators can be factorized in the sum of two or 

three standard (single pole) lattice propagators, P, s 
1/(4sin’(iko) + w:(k)), 

P(k) = Z(k)(P-(k) -P+(k)), 

P,,(k) = a,,(Z,-(k)P-(k) - Z,+(k)P+(k) 

+ $(k)Po(k)), 

It is straightforward to derive the explicit expressions 
for the 2 factors and energies o from Eq. (8). Note 
that 2: = 0 and that (for uc = 1) w:(O) = w:(O) = 
12. The spurious poles in this case occur at an energy 
2asinh(&)/a. 

One particularly simple test of improvement is 
achieved by computing for SU( 2) the effective poten- 
tial for a static abelian zero-momentum background 
field, oj = exp( $iCjc+s/N) and 00 = 1, that is a solu- 

tion of the (lattice) equations of motion. Introducing 
the quantum fluctuations through U,(X) = eG#(‘)cILL 
one easily diagonalizes the quadratic fluctuation op- 
erator in the covariant gauge 

P 

x @p(x) 5 (9) 

where B@q(x) = ~,(P(x + biL>oi - q(x). Due to 
the background field, momenta will be shifted to k” = 
(27rn + Q/N, where s = 0 for the isospin neutral 
and s = f 1 for the isospin charged components of 
quantum fields. The eigenvalues can be directly read 
off from Eq. (8) and one finds 

+4asinh (2uc/m) }, 

(10) 

with Aj = 1 + 4z cos’( ikif) and W* = Cj 4Aj X 

sin*( i kj+). The result, normalized to Vfb( 0) = 0, is 
plotted in Fig. 1 for ug = 1 (together with the effec- 
tive potential for the Wilson action, obtained by tak- 
ing z = 0). At N = 6 we can not distinguish the result 
from the continuum at the scale of this figure. 

We can use the abelian background field also 
to compute the one-loop correction to the tree- 
level kinetic term igi2 (dCi( t) /dt) ‘, which yields 
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I/c 
1 2 3 4 5 6 

Fii. 1. The SU( 2) effective potential for a constant abelian back- 
ground field C = (C, 0.0). The full line represents the continuum 
result (obtained by taking the number of lattice spacings N -+ 00). 
The lower two dashed curves are for the square Symanzik action 
(un = 1) with N = 3 and 4. The upper three dotted curves are for 
the Wilson action with N = 3.4 and 6. 

i’f’ +_;I) ( dCi( t) /dt)2. In the continuum limit 

g = go - 11 log( N)/12$ is kept fixed while 
sending the number of lattice spacings, N, to infin- 
ity. An analytic expression for tyt (N) was found in 
terms of a sum over spatial momenta, which reduces 
to the result for the Wilson action [ 141 at z = 0. 
Computing this sum for one hundred lattices and 
fitting the result to a polynomial in l/N we find 

Ql = -0.0340012235(l) for z = -l/16 and at = 
-0.1648688946( 1) for z = 0. From the difference 
one determines the ratios of the Lambda parameters 
between the square Symanzik (As) and the Wilson 
(Aw) actions. One can also compute the one-loop 
correction for $gi2Tr F,$, which gives an identical 
result for the Lambda ratios. Alternatively, we used 
the heavy quark potential method [ 121, which also 
allowed us to extract the Lambda ratios for SU(3). 
We quote the following result: 

Asz/Aw[SU(2)] =4.0919901(l), 

Ar2/A,[SU(3)] = 5.2089503( 1). (11) 

In addition, the one-loop perturbative expansions of 
the SU( k) expectation values for an a x b plaquette, 
V(P(a, b)), are given by 

(Re k-‘TrU(P(a,b))) = 1 -$&(k--k-‘)w(a,b). 

(12) 

For the square Symanzik action (Rq. (6) ) we find 

w( 1,1) =0.3587838551(l), 

w( 1,2) =0.6542934512(l), 

w(2,2) = 1.0887235337( 1). 

3. Monte Carlo data 

We wish to determine in small volumes the mass 
for the scalar (AT) and tensor glueballs, the latter 

(13) 

split due to the breaking of rotational invariance in 
the doublet Ef and the triplet Tc. Also the energies 
of the electric flux (“torelon”) states with one, two 
and three units of electric flux (ei, i = 1,2,3) will 
be measured. In addition we consider the states with 
two (TA or B(110)) and three (Tl(111)) units of 
electric flux that have T;’ quantum numbers (negative 
parity in two directions of electric flux, symmetrized 
in those two directions). See Ref. [ 151 for details and 
further references. 

The size of the lattice used is 43 x 128 and masses 
m are converted to dimensionless parameters into z = 
mL; in lattice units we hence multiply the mass with 
the number of lattice sites in the spatial directions. In 
large volumes one should have zet = aL2& where 
(T is the infinite volume string tension. This is why we 
will consider the rations fi/zA:. These and other 
mass ratios will be plotted as a function of zA:. The 
analytic result [ 141 derived by diagonalizing an effec- 
tive Hamiltonian to describe low-lying states is valid 
up to z$ N 5, after which degrees of freedom that 
were integrated out perturbatively will receive non- 
perturbative contributions [ 111. The breakdown will 
occur at smaller volumes for higher excited states. 

For the Wilson action we have chosen p = 3.0 and 
j3 = 2.4; for the improved actions j3 was tuned to yield 
results in roughly the same physical volume. These 
parameters correspond to lattice spacings of approxi- 
mately a = 0.018 and a = Q. 12 fermi. For the smallest 
of these two, one expects tree-level improvement to be 
effective and we have therefore not tadpole corrected 
the actions in this case. Note that for these small vol- 
umes one finds from the analytic results that the lattice 
artefacts in the mass ratios are quite much bigger [ 141 
than in larger volumes. Data was taken for both the 
LW and square Symanzik actions, and as a test on our 
programs also for the Wilson action for which we can 
compare with available high precision data [ 151. 

At the larger volume we concentrated our attention 
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Table 1 Table 2 
Values of 2 = mL at a lattice spacing of approximately 
0.02 fermi for SU(2) on a 43 x 128 lattice. We have per- 
formed 16000 measurements (25 heat-bath sweeps apart) for 
Wilson and 20000 for both LW and square Symanzik ac- 
tions ( 10 sweeps apart). The entries in the table corre- 
spond to the representations of the cubic group, the number 
of operators used in the variational analysis and the effec- 
tive masses extracted from n/e ratios of correlation functions, 

i.e. -log (x,(0(‘+ n)O(r))/x,(O(r + 00(r))). Entries 
in boldface are taken as final estimates for Fig. 2. Errors have 
been analyzed using the jackknife method. 

The same as in Table 1 but for a lattice spacing of approximately 
0.12 fermi We have performed 40000 and 48000 measurements 
respectively for tree-level LW and tadpole corrected one-loop im- 
proved LW Symanzik actions, in both cases separated 2 heat-bath 
sweeps apart. 

Rep. #op. l/O 2/l 312 413 

Wilson action, p = 3.0 
A: 5 2.105(9) 2.03(l) 2.02(2) 2.08(3) 

3 
$ 3 

1.743(5) 1.703(9) 1.71(l) 1.70(2) 
3.315(9) 3.25(2) 3.21(4) 3.2( 1) 

e1 3 0.277(3) 0.269(S) 0.269(6) 0.270(7) 
e2 3 0.588(5) 0.575(7) 0.576(9) 0.58( 1) 

e3 3 0.978(5) 0.962(8) 0.97( 1) 0.97(2) 

LW Symanzik action, fi = 2.374 
A: 6 1.89( 1) 2.01(2) 2.03(3) 2.09(5) 

3 
;z 3 

1.626(6) 1.77(l) 1.78(2) 1.80(3) 
3.134(8) 3.43(2) 3.47(S) 3.4( 1) 

el 3 0.307(3) 0.334(5) 0.339(6) 0.342(8) 

e2 3 0.656(5) 0.718(S) 0.73(l) 0.74(2) 

e3 3 1.104(6) 1.21(l) 124(l) 1.26(2) 

Square Symanzik action, /3 = 2.2013 
A: 6 2.15( 1) 2.31(2) 2.30( 3) 2.29(5) 

3 
;j 3 

1.844(6) 2.00(l) 2.02(2) 2.04( 3) 
3.56( 1) 3.87(3) 3.88(7) 3.8(3) 

e1 3 0.375(4) 0.405(6) 0.408(7) 0.412(9) 

e2 3 0X08(6) 0.877(9) 0.89(l) 0.90(2) 

e3 3 1.368(8) 1.49(l) 1.52(2) 1.54(9) 

Rep. #op. l/O 2/l 312 413 

LW Symanzik action, /I = 1.83 

‘4: 7 3.71(l) 3.74(2) 3.78(S) 3.9(2) 

;I 
7 3.212(9) 3.29(2) 3.30(4) 3.3( 1) 
3 6.13( 1) 6.31(6) 6.3(3) 6.2(1.0) 

e1 7 0.813(6) 0.84(l) 0.84( 1) 0.84(2) 
e2 7 1.75(l) 1.80(2) 1X0(3) 1.80(3) 
e3 8 2.89(2) 3.05(3) 3.09(S) 3.2( 1) 

T;: 7 1.857(6) 1.92(l) 1.92(2) 1.91(3) 
T$(lll) 7 2.67( 1) 2.67(2) 2.66(3) 2.67(7) 

Tadpole corrected LW Symanzik action, p = 2.04 
A; 7 4.07( 1) 4.06(3) 4.05(S) 3.8(2) 

; 
7 3.366(6) 3.57(2) 3.57(5) 3.6( 1) 
3 6.28(2) 6.76(7) 6.6(4) 6.5( 1.0) 

el 7 0.889(5) 0.94(l) 0.94( 1) 0.94(2) 

e2 7 1.920( 1) 2.02(2) 2.01(3) 1.98(4) 
e3 7 3.402(14) 3.41(3) 3.38(4) 3.21(7) 

T;: 7 1.893(6) 2.06(l) 2.07(3) 2.07(4) 
T$(lll) 7 2.79( 1) 2.87(2) 2X6(4) 2.83(8) 

absorb the tree-level value of co in the definition of the 
coupling constant, as was done in Refs. [ 7,9]. When 
using the convention of Eq. (15) the standard two- 
loop relation between /3 and aA needs no modification. 
But the Lambda parameter has to be corrected for 
the fact that the Liischer-Weisz choice of coupling 
amounts to multiplying Eq. ( 1) by (go2 + 0.08112), 
so as to compensate for the one-loop correction to CO. 

to the LW Symanzik action with tree-level and tadpole 
corrected one-loop values of the coefficients. We veri- 
fied that there is no observable volume dependence of 
u. by comparing its value with the one on an g3 x 64 
lattice (the difference was less than 0.3%, consistent 
with zero within statistical errors). Following the pre- 
scription of Refs. [4,7,9] we took for SU( 2) 

co =5/3, Cl = -( 1 + 0.2227a,(uo))/( 12u;), 

c2 = -0.02224 x 5cy,/( 3&, c4 = 0, 

as(uo) E -(410guo)/1.725969, (14) 

obtained from the one-loop coefficients determined by 
Liischer, Weisz and Wohlert [ 3,121. Substituting these 
coefficients in Eq. ( 1) and multiplying by p/4 f l/d 
gives the action we used for our simulations. We do not 

In the intermediate volumes we have used for our 
simulations, masses remain small compared to the 
spurious unphysical poles. This allows us to use the 
variational approach [ 161 to increase the overlap of 
the the states to be measured. We have been able to 
extract clean signals. On very coarse lattices where 
masses would no longer be small in lattice units, one 
looses the signal in the noise too early to extract it 
reliably, whereas also the variational method is no 
longer well founded. Recently these problems were 
tackled by using anisotropic lattices [ 93, well known 
from finite temperature studies [ 171. Only imple- 
menting improvement for the spatial directions will 
in addition remove the problems with a non-hermitian 

transfer matrix. 

The raw data are listed in Tables 1 and 2, based on 
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0.5 

0.4 

Fig. 2. SU(2) Monte Carlo data (see tables) on a 43 x 128 lattice for the Wilson action (circles for our data and crosses for data 
by Michael [ 15], with tilted error bars when data overlap), the LW Symanzik improved action (triangles), the square Symanzik action 
(squares) and the tadpole corrected one-loop LW Symanzik action (pentagons) at lattice spacings of approximately 0.02 and 0.12 fermi. 
A comparison is made with analytic results for the continuum (solid lines) and Wilson action on a lattice of size 43 x co (dashed lines). 

perfoxming the variational analysis on the second time 
slice. We have verified that the result is stable against 
performing the variational analysis on the tist time 
slice. We used 3 to 8 operators, as defined in Ref. [ 151, 
for the variational analysis. They were computed in 
terms of Teper-fuzzed links [ 181. Only for the deter- 
mination of the scalar glueball mass at a N 0.02 fermi 
the variational analysis was important, in most other 
cases a single but Teper-fuzzed operator was sufficient 
to obtain accurate results. 

Another issue is that for a N 0.02 fermi the small 
value of the coupling gives rise to large autocorrela- 
tions that can affect the energies of electric flux. In 
most cases we found it useful to correct for this by 
eliminating data for which the average of the spatial 
Polyakov loops over the 128 time slices (and a few 
heat bath updates) was bigger in absolute value than 
one half. Our results for the Wilson case at /3 = 3 agree 
to high accuracy with those reported by Michael [ 151. 

Because of the availability of analytic results, it is 
not necessary to exactly tune the different actions to 
the same physical volume. Nevertheless in particu- 
lar for the data at u = 0.22 fermi we made an effort 

to tune parameters appropriately, as we can make a 
stronger point when directly comparing lattice data at 
the same physical volume. The value of ug is deter- 
mined self consistently [ 7,9], adjusting with the help 
of the Ferrenberg-Swendsen trick [ 191 the input value 
of ug to agree with its measured value. This only re- 
quires little Monte Carlo time. The results of Tables 1 
and 2 are presented in Fig. 2 to compare with the ana- 
lytic results for the continuum (solid curves) and for 
the Wilson action on a lattice of size 43 x 00. We have 
used approximately 160 hours of CPU time on a Cray 
C98 to generate and analyze the data presented in this 
paper. Computational overheads for improved actions 
amount to a factor 3 for the LW and 4 for the square 
Symanzik action over the standard Wilson action. 

4. Discussion 
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Symanzik actions. In both cases the improvement is 
considerable. 

Also at lattice spacings around 0.12 fermi and vol- 
umes of approximately 0.48 fermi (24; N 4), the 
agreement of the Wilson action lattice data with the 
corresponding analytic results is in general very good 
for the lowest lying states. The difference in the ana- 
lytic result between the continuum and Wilson lattice 
action gives an indication how far the improved data 
is removed from the continuum result. Significant im- 
provement is observed in some of the cases, in partic- 
ular for zr,; /.Q;, approaching the continuum analytic 
result. 

The most salient feature of our data is that tadpole 
correction has no significant effect on the tree-level 
improved data for the ratios. Perhaps for the cases 
where tree-level improvement is already significant 
this is what one would want, but our results show some 
instances where tree-level improvement has no effect 
and the tadpole correction is of no help either. 

In particular we note that the ratio G/z*+, mea- 
sured to an accuracy of better than 1.5%, deviates 
from its continuum value by S-6%. For this quantity 
tree-level improvement as well US tadpole corrected 
one-loop improvement are unable to show deviations 
from the Wilson result. This result puts some doubt 
on the usefulness of the tadpole correction for careful 
extrapolations of mass ratios to the continuum limit. 

One might object that the lattice spacing we have 
used to implement the tadpole correction, u = 0.12 
fermi, is not really large enough. We have certainly not 
probed lattice spacings as large as a = 0.4 fermi, that 
have been advertised [ 71. Nevertheless for a = 0.12 
fermi, ui = 0.68 19( 1) and significantly deviates from 
1. The correction to cl at these parameters is 27% 
with respect to its tree-level value (without tadpole 
correction it would have been 17%). 

grateful to Colin Morningstar 

masses. 
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