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Abstract

We determine the one-loop correction to the anisotropy factor for the square Symanzik improved lattice action, extracted
from the finite volume effective action for SU(N') gauge theories in the background of a zero-momentum gauge field.
The result is smaller by approximately a factor 3 than the one-loop correction for the anisotropic Wilson action. We also
comment on the Hamiltonian limit.

1. Introduction

Improved actions [1,2] have become a frequently used tool for doing Monte Carlo simulations. Recently
the square Symanzik improved action was introduced [3], motivated by the desire to simplify perturbative
calcuiations. From the numerical point of view this new improved action is not expected to be more optimal in
removing lattice spacing errors, although simulations [4,5] suggest it is not performing much worse than the

T iicchar-Waic7z chaica 21 of the imnraved artion
LAUSCACT-WOISZ Cni0ICC |« O N 1mprovea acuion.

The square Symanzik action was introduced to allow for a simple background covariant gauge condition.
The background field calculation is particularly suited for computing the renormalized coupling constant, not
only in the continuum [6], but also on the lattice with, or without anisotropy [7,8]. Improved anisotropic
lattices are used both for thermodynamics [5] and for extracting glueball masses on very coarse lattices [9].
In both cases the aim is to enhance the resolution in the time direction. Also for the square Symanzik action
anisotropy was introduced and used in Monte Carlo simulations [5]. This has motivated us to compute the
one-loop correction to the anisotropy factor for this improved action, as it requires only a minor modification
in the calculation already performed to compute the Lambda parameter for its isotropic version.

We will perform the background field calculation for a finite volume at arbitrary anisotropy £, using the
methods followed for the isotropic Wilson action [10]. Our results will include the Wilson action and the
square Symanzik improved action. The one-loop correction to the anisotropy factor for the Wilson action
was computed before by Karsch [8] in an infinite volume. Our finite volume calculation nicely confirms the

universality of these results.
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2. The anisotropic square Symanzik action

For the Wilson action the anisotropy was introduced as follows ( o = Uu(x) € SUWN)):

1
Sw(€) =?Z[n§" > nj+n—‘§ZPo,-], Py =2ReTr(1-+ |, (1
0%

i>j>0 i#0 b odi7)
where (B = 2N/g3 for SU(N))
(€. 80) =1+m(&)/B+--- (2)

is required to guarantee that the symmetry of interchanging space and time is restored (in the infinite volume and
continuum limit hence restoring Lorentz, or rather O(4), invariance). As we have changed the discretization
of the theory, also the Lambda parameter belonging to the running coupling will depend on the anisotropy
parameter. Both 7, (£) and A(£) can be determined from a one-loop calculation. In this paper we will use the
notation £(go) = 177! (&, go)€, sometimes in the literature also denoted by 7. In the following £(go) will be
denoted by £ for short; from the context it should be clear when ¢ indicates the tree-level value.

As was formulated in Ref. [5], one can similarly introduce anisotropy for a tree-level improved action,

S{eh) =) ReTr »
x HFEY

with

*—

{co(l—;ll;l)+201 (1—vI::I)+C4(1—:< L)} (3)

Euv
g% Pl

b =buls Ei=£7, =8, 4)

We wish to emphasize that the issue here is not to improve this action beyond tree-level. It would involve the
extra non-planar Wilson loops that also appear in the isotropic case [2]. Its coefficients, as well as the one-loop
corrections to ¢g, ¢; and ¢4 will be doubled in number due to the anisotropy. After eliminating redundancies
extra parameters will have to be determined, one of which can be related to ;. However, additional physical
quantities are required to fix all one-loop coefficients, making this a less than straightforward generalization
from the isotropic case [2,11,12]. The renormalization of the anisotropy parameter is, however, determined by
requiring the restoration of the space-time symmetries in the continuum limit, and can therefore be addressed
without computing the one-loop corrections to the improvement coefficients.

We impose the renormalization condition not directly by the requirement to restore the space-time symmetries,
but rather by comparing the finite volume effective action in a zero-momentum background field derived from
the anisotropic lattice action in Eq. (3) with the result for the isotropic lattice action. We may also compare
with the result obtained from dimensional regularization in the continuum. We will study the one-parameter
family of actions defined by

co=1/(14+42)2, ¢ =zc0, ca=ct/co, (5)

where z = 0 corresponds to the Wilson action and z = —1/16 corresponds to the square Symanzik action,
which is improved at tree-level to second order in the lattice spacing.

The relation ¢4 = c3/co allows for a simple background field covariant gauge condition that is easily
generalized to the anisotropic case.

Fer =V Y DL (14 22+ D)2+ Dp)) Gu(x) =0. (6)
um
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The background covariant derivative is given by ﬁ,ﬂ)(x) = I:/M(x)d)(x + ) 0L(x) — ®(x) and the quantum
fluctuations are parametrized as U, (x) = e[y « (x) for alattice background field U «(x). The free propagators
in this gauge (at lA],L(x) = 1) are given by

1
Ghost : P(k) = ,
ost+ P VB X, Ex (4sin? (ky/2) + 4z sin’ k,)

P (k)b

(7

Vector : P, (k) = Veo€u(l+42 cos?(k,/2))

3. Background field calculation

We compute on a lattice of size N> x oo the effective action for a dynamical (i.e. time dependent) zero-
momentum non-Abelian background field, 0 i (x) =exp(&;(1)) Eexp(c;’(t)Ta/N) and Uy(x) = 1 (the anti-
hermitian generators T, are normalized as Tr (7,T) = —%501,). It is obtained by intergrating out all non-zero
momentum modes. No integration over the zero-momentum quantum modes is included, which for a dynamical
background field would lead to breakdown of the adiabatic approximation near ¢ = 0, where the classical
potential is quartic [13]. We will follow closely the methods developed for the isotropic Wilson action,
described at great length before [ 10]. The effective action is given by

2
1 m\ (+D) =) 1 (1 m 2 n2
Sof (o) GO (s ) o) ovicen ).

where a, = L/£N is the lattice spacing in the time direction, L the physical size of the volume, Fj} = sa,,ec,-bcj

the field strength and Vi(c) is by definition the rest of the effective potential. All that is relevant to know
is that at O(c*) its coefficients are fixed uniquely by an abelian background field, unambiguously separating
(1‘7,.‘]‘-)2 from Vi (c). We have ignored terms that vanish in the continuum limit. Furthermore, the renormalization

group to one-loop order implies g 2= _ 11N log(asA) /2472, where a;=L/N = a,¢ is the lattice spacing in
the space directions. We have therefore introduced the renormalized coupling g2 = & 1NN log(N) /247%=
—11N log(LA) /2412

We note that A, 71, a| and a; depend on ¢ and z. Universality requires that physical quantities, as well as
the background field effective action, are independent of these parameters in the continuum limit. This implies
that both (a; — 11N log(LA) /247>~ /2N') and (@ — 11N log(LA) /247> +7,/2N) are independent of ¢
and z. For isotropic lattices (£ = 1), for which n; =0, this implies that

a) — o =ay — @5 = 1IN log(A/A°) /247> (£ =1), (9)

where af are the values for a fixed isotropic regularization, like dimensional regularization in the continuum,
or the isotropic Wilson action. For anisotropic lattices we follow Karsch [8] by defining

(&) =a(l) —ai1(§), co(§) =an(l) — x(§) (10)
and one easily derives
M(€) = N(co(§) —cr(£)), AE)/A) =exp (1277 [co(£) + - (£)1/1IN) . (1D

We can summarize these various relations between the Lambda parameters also as

ACE, D) JAE ) =exp (1277 (£,2) + @ (€,2) — @i (€,2') — ea (£, 2)1/1IN). (12)
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4. Analytic results

The coefficients a; and a2 are determined by working out the determinants of the quadratic fluctuation

onaratnr Thic cactinn can ha ckinnad whan ane ig intaractad in tha niimariral racnlte anly Th all ardarg
OPCraGr. 11lis SCCUO Canl 88 SaippeG Wil GIic 15 HICICHICh 1 ulC DUMCTICar resuats Oy, 10 au Oracis u] l.llC

background field and to quadratic order in the quantum field, using c§ =0 and cj(x+ 4) = cu(x) =cj (1), we
find (k,£ € {1,2})

co n A 2
Sy = 4-72 (Z Eun 2t 2{(5,(# (1) =2) (Drades(x) —Dis i (%)) (13)
&0 x JTRAN)
8 (M T (Y4 Dosdoa(x) Ha (XY ED0 o (Y] + Thoa(x) Frn(x)]
b “lfy\ J LA 124 L9 ANSPA R (ST AN I KQMEP A~/ 1 1 LMLV JYMKU NS
2
+(E+k=2 D13 (0). D8 (01} } - 4D £ Dldia(0) } >
w.k
We have introduced the following convenient shorthand notations
St (0) =2 = Seaas(t) = 8, (), S 0o (0) = 81 15 (D) = Skas (1),
Sk,l,f;?(t) - ekc,,(t)efc,,(t+k;z)e—kcu(x+fv)e—lép(z)’ (14)

as well as “doubled” covariant derivatives and quantum fields (g15(x) =q,(x) and D1z =D,,)
Dyp®(x) = ¥4 00(x +20)e7 %0 — B (x),  Gop(x) =24u(x) + Dydu(x). (15)
Therefore D,y = 2[3# + Iﬁi and the gauge fixing functional can be wriiien as

For(x) =v/20 Y £u2" D] pdia (). (16)

.k

S, was obtained by adding —) J‘Trﬁgf(x)/ g to the action S. Under an infinitesimal gauge transformation,
Gkp (x) transforms as Dy @ (x) for k = 1,2, giving for the ghost operator

Men=/co Y 2" D Dia. (17)
.k

It is now straightforward to compute the functional determinants. Simplifications can be made due to the fact
that we can split the one-loop correction in a purely kinetic part for which we can drop all terms of higher than
second order in ¢ and a potential term for which the time dependence of the background field can be ignored.
We find the following results

g1 (X) = afP(X) + £af? (X) + E5a)(X) + 5™ (X)), (18)

with X = {£, 2, N,N}, s=0,1 and

1N

(/LV)(X)— log(N) + —— 3 §3N3 Z/dko 3quV)P2’ (19)

-

af (X) = Sﬂfw >, / dko{2(4 3p, - ) +du(¢p +401 —p»)}P,

k#0_"
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oy s+HN b d*log P
a” ’(X)—( ) Z/dko 6k2{ 3¢ [¢p? +4(1 — p)] log P + & akf +d.P

127EN3
8 dlogp,
ak (@P Ik, >

where { = 1 + 4z, P = P(k,£,z) is the (rescaled) propagator, and d,,, p, and g, are simple trigonometric
functions (momenta are given as k = (ko, k) = (ko,2mn/N), n; € Zy)

P = [4sin*(Lko) (1+4z cos’(3ko))+@?] Tl at= f‘zz4sin2(%ki) (14+4z cos*(3k:))

dﬂ=cos(k,‘)+4zcos(2k,‘),pﬂ=[1+22(1+cos(k#))] ,q# p#1(1+cos(k,,,))(2 {pu)t. (20)

We note that in the continuum limit, N — oo, the total derivative terms a;, will only get contributions from
near k = 0. It can be shown that

8 ]
Jim @) (x) =N (572% +s (% - 4—577—2» . ay=—~(4m)"2-0.619331710- - 21

where a4 is a constant introduced in Ref. [13]. In particular these boundary contributions are independent of ¢
and z and drop out in the computation of the quantities in Egs. (10-12). The remaining terms can be converted
to finite integrals in the continuum limit, replacing N=3 3", by (2m)~* [7_d’k.

For isotropic (£ = 1) actions, a!?* = a{*? and a”z) are independent of s. Consequently a1 —ay =

N(1/24m%—8ay4) /5 is independent of the regularlzatlon employed, cmp. Eq. (9). The non-vanishing value of
this difference is a manifestation of the breakdown of Lorentz invariance in a finite physical volume. At finite
N our results in Egs. (18-19) are exact. All integrals over ko can be performed analytically, yielding sums
over the N> — 1 non-zero spatial momenta of explicit analytic expressions in z, £, N and k, which are readily
evaluated numerically. It can be shown that as an expansion in 1/N, terms linear and for z = —1/16 (i.e. with
improvement) quadratic in the lattice spacing are absent. For z = 0, where p, = { =1, g, = (1 +d,) and
d,, = cos(k,), dramatic simplifications occur. There are in particular for z =0 more efficient ways to compute
the coefficients, but we will not dwell on this any further.

We list the following ko integrals required to evaluate the expressions in Eq. (19) (y(&) is defined by
» = 2sinh(3y) and m > 0)

ks

m—1
1 1 a 1
5°=—/dk P™ = (——> { }
m= o 0 (m—-1)!\ 9&? 2sinh(y) V1 + 4ze~?

R ) 1 a \"! e
8! = — [ dko sin®(ko) P" = - ,
" 277/ o sin”(ko) (m~1)!< 8&)2) {1—|—4ze'~"+\/1+426‘-"}

_1_L/" ] __a_)""‘ Y _)}
5,,,—277 dko 27 (1 = po) P = s \ " 782 46 7 8 )¢

! ks 1 9 m—1 1+§ gal—l _45(])
= [ dko pO = Yy 7+ - ’
2r (m—1)! 3&? 2023 @?
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Fig. 1. Comparison between the square Symanzik (sq) and Wilson (W) action results for 1, and A(£)/A(1). Bottom figure for SU(2)
and top for SU(3).
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5. Numerical results

By extrapolating in 1/N the explicit expressions for o; and a» on a finite lattice, we can extract their
continuum limit to at least nine digit accuracy (we evaluate the momentum sums on lattices with N = 3 to
N =99). Our results are valid for arbitrary SU(N), where a; ; can be written as aA + b/A. Using Egs. (10-
11) we reproduce results obtained by Karsch [8] for the Wilson action. The ratio of the square Symanzik
action Lambda parameter to the Wilson action Lambda parameter is obtained using either Eq. (9) or Eq. (12)
with (z,£€) = (—1/16,1) and (z’,£') = (0, 1). The result was already reported in Ref. [3]. One finds

4.0919901(1) for N =2,

Asa/Aw = { 5.2089503(1) for A" = 3, (23)

agreeing with two alternative recent determinations based on the heavy-quark potential and twisted finite volume
spectroscopy [12].

In Table 1 we give results for the square Symanzik action at some selected values of ¢ between 1 and 20,
likely to be of use in simulations, as well as for the Hamiltonian limit, £ = co. The ¢ dependence is illustrated
in Fig. 1. Results for the Wilson action are given for comparison. We only present #; and A(£)/A(1) for
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Table 1
Results for 7, the one-loop correction to the anisotropy £, and the Lambda ratios for SU(2) and SU(3) Wilson and square Symanzik

improved lattice actions

Square Symanzik Wilson
¢ m A /A m AE/AD
1.25 0.0268994230 0.9448516628 0.072639575 0941156329
1.50 0.0438407406 0.9030990984 0.120815052 0.895220389
175 0.0553875971 0.8715577166 0.154865904 0.862024175
2.00 0.0637309147 0.8473816328 0.180064348 0.838519956
225 0.0700334250 0.8285038242 0.199377634 0.821947171
3.00 0.0821772181 0.7913271531 0.236552649 0.796282892
4.00 0.0909349958 0.7647074013 0.263881756 0.786799000
SU(2) 5.00 0.0960771084 0.7495355534 0.279376900 0.786585170
6.00 0.0994693690 0.7398121769 0.289388945 0.789176074
7.00 0.1018786317 0.7330678148 0.296372263 0.792513704
8.00 0.1036794982 0.7281198326 0.301513492 0.795887850
9.00 0.1050771985 0.7243357505 0.305453471 0.799053830
10.00 0.1061937831 0.7213480410 0.308567683 0.801940305
20.00 0.1112064198 0.7083043501 0.322153959 0.819059857
o0 0.1162101357 0.6957761241 0.335019703 0.843515849
1.25 0.0761124472 0.9441552990 0.202232512 0.940150646
1.50 0.1259027090 0.9013716023 0.339196380 0.893219710
1.75 0.1609870225 0.8690317960 0437758448 0.859889187
2.00 0.1870579338 0.8443511780 0.511822337 0.837010062
225 0.2072120386 0.8252080564 0.569337480 0.821587813
3.00 0.2472872614 0.7880636199 0.683440912 0.800832184
4.00 02772479446 0.7621707435 0.767394275 0.798377544
SU(3) 5.00 0.2952330195 0.7477916435 0.816720193 0.804338358
6.00 0.3072395475 0.7387537514 0.849056600 0.812081537
7.00 0.3158270143 0.7325745051 0.871852492 0.819692104
8.00 0.3222747701 0.7280896992 0.888772783 0.826632621
9.00 0.3272941994 0.7246877937 0.901823656 0.832804921
10.00 0.3313126485 0.7220187467 0.912193385 0.838252399
20.00 0.3494266569 0.7105270954 0.958042934 0.868813879
00 0.3675789970 0.6996590739 1.002502899 0.910408485

SU(2) and for SU(3), since one can use Eq. (11) to extract the values of ¢, and c,. These can furthermore
be used to extract the results for any other number of colors, since

20-N%) N2 3(NZ —4)

Cf,a'(N) = SN 7,0-(2) + SN

Cra(3). (24)

We note that in all cases the value of 7 is reduced by a factor of approximately 3 for the improved square
Symanzik action as compared to the result for the Wilson action. Indeed for the simulations performed in
Ref. [5] a reduction with approximately a factor 2.5 for the measured value of 7; can be deduced (whereas

the results obtained from the Liischer-Weisz and square Symanzik action agree within errors). We extracted

1 using the one-loop truncation of Eq. (2). At the rather strong coupling employed in these simulations the
measured values of 7y themselves should of course not be expected to agree with the perturbative results [14].
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6. Hamiltonian limit

Here we briefly discuss an interesting feature of the Hamiltonian limit, i.e. £ — oc. It turns out that the
potential V) (c) has field dependent contributions that diverge in this limit. This divergence, however, only occurs
for z # 0, in particular for the improved square Symanzik action, i.e. at z = —1/16. At first sight this may
seem puzzling. However one should notice that when maodifying the action also the measure of integration has
to be corrected. Such a modification of the measure can of course be absorbed in the action, as is usually done
and is of the same order as the one-loop corrections, giving rise to a term »_ .8V (c;(t)). Since the effective
potential appears in the action as »_,a,Vi(c(t)), with a, = L/N¢, we conclude that the total contribution to
the effective potential, due to cotrecting for the measure, is linear in ¢ (vanishing for N — oc) and given by
NEY",8V(c;) /L. Tt is hence much more natural to redirect any terms linear in £ to the measure.

To determine 6V we compute V;(c) by taking an abelian background field, suitably extended to the non-
Ahalian cantar Faor SIT(2) thic extencion is achieved by substitntine . = A /\a/va in the Ahalinn hackaoround

Abelian sector. For SU(2) this extension is achieved by substituting C; = /3 c?c? in the Abelian background
link variable 0,~ = exp(%iCja@ /N). This can be generalized to arbitrary gauge groups following the methods
described in Ref. [15], but we will for the sake of presentation only consider the effective potential for SU(2).
At O(c®) there are additional terms that vanish for Abelian background fields, but they do not concern us here
(and have finite limits as £ — o0o). Along the lines described in Ref. [3] anisotropy is easily incorporated and
one finds V;(c) = V?*(C) — V(0), where

" N¢ @  w w?
Vb(c)__ Z {Zlog(A)+4asmh<m\|1+4z+2—§2+—§—\/1+@>}, (25)

a1

n+dcZy

with A;(n;, C;) = 1+4z cos?((mn; + 1C;) /N) and w?(n,C) = 3 4A;sin” ((7n;+ $C;) /N) (a more detailed
derivation for the isotropic case will appear elsewhere [16]). One can verify that this gives the correct
continuum limit at fixed ¢. For the Wilson action (z =0) one finds V?®(C) = L7INEY, .o 4asinh(w/2€)
(the apparent divergence for z = 0 can be shown to be field independent). At finite N we find 6V (c;) =
S onsolog (/\,-(n,-,C,-) / /\i(ni,O)). The remainder, denoted by V;(c), can easily be shown to have a finite limit
for £ — 0o. We conciude that the Haar-measure, dU;(c) = N~' (27 C;) =2 sin®(Ci/2N) [], dc?, is to be corrected
with a factor exp [—8V (¢;) ], giving the exact measure at finite N for deriving the effective Hamiltonian from
imnroved actions. Tt is not too hard to show that up to Pynnnentm] corrections in N, we have mm[—ﬁV(r' Y1 =

IHEIPTOVOQ QLLT0NHS, 23 15 J00 00 128380 10 S8 ilal ACEIRIAl ORI i)l

[14 4z cos?(C;/2N)] /(1 + 4z). Indeed at z = —1/16 the rescaled measure is flat to O(c3/N3 )

It is also interesting to point out that one finds LV (c) = y1(c?)2 + O(c*), with y; = ¥§ —2z/NEV1 + 47 +
O(N~3). Since at z =—1/16 on-shell improvement should imply that spectral quantities have no O(1/N?)
errors, the 1/N correction to 7y can be removed by a non-local field redefinition, as was explained to some detail
in Ref. {17]. The field redefinition is designed to remove the next-to-nearest couplings in the time direction
(not listed in Eq (8) since they are irrelevant in the continuum limit). This non-local effect disappears in the

l'ld.llllll.Ullldll llllul, as ll bllUUlU

7. Conclusions

We have caiculated the one-loop correction to the anisotropy parameter for the square Symanzik action, using
a zero-momentum background field calculation in a finite periodic volume. For the Wilson case we retrieved

the results in an infinite volume of Karsch fQ1 which i1s a rather non-trivial check of nnnmrcahhl since even

LT ITOOULLWD i1 Qi e VORWIC Ui @i sl | Oy, Vraiaatil 1S G Iauatd NULTUaVIGL GIGVLR U1 WiLVOISallny, Siale YOIl

in the continuum the periodic boundary condltlons break the Lorentz invariance. We find that the size of the
one-loop correction to the anisotropy is reduced, both for SU(2) and SU(3), by approximately a factor 3 when
using the square Symanzik improved action instead of the Wilson action.
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We have also discussed the “Hamiltonian limit” of the zero-momentum effective theory, where the lattice
spacing in the time direction is reduced io zero. We show how ihe iniegraiion measure is to be improved,
defining the inner product on the Hilbert space involved in extracting an effective Hamiltonian from the
effective action [18].
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