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Abstract

By studying the non-linear effects of overlapping instanton pairs we address difficulties in the identification of instanton
distributions when the average instanton size is comparable to the average distance. For the exact charge two solution, we
study how its parametrisation relates to a description in terms of individual instantons. There exist two dual sets of
parameters describing the same charge two instanton solution. This duality implies the existence of a minimal separation
between two instantons. Conventionally used lattice instanton finder algorithms based on the assumption of diluteness tend
to underestimate instanton sizes. Finally we numerically confirm this for realistic parameters of the instanton liquid. The
effect is enhanced by parallel orientation in group space. q 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

In recent years the instanton liquid model has
been very successful in describing the low energy

w xproperties of light hadrons 1 . On the other hand, it
seems quite unlikely that instantons can account for

w xconfinement 2 . This is certainly the case if the
instanton liquid is sufficiently dilute and the instan-
ton size distribution falls off rapidly enough for large
instantons. If the fall-off is slow, e.g. as ry5 or ry3,
a linear term in the heavy quark potential due to

w xinstantons has been claimed 3 , although these re-
sults are controversial. Still, a proper understanding
of the tail of the instanton size distribution may have
physical significance.

Unfortunately very little is known about it. Lattice
simulations are typically done on too small volumes
and have too poor statistics to contain any precise
information on the tail of the distribution. Moreover,
even the question of what non-perturbative mecha-

nism suppresses large instantons is still unanswered,
w xalthough some recent attempts have been made 4 .

In this paper we would like to make some remarks
on these issues by studying the most general charge
two instanton solution. Our observations will be

Ž .about the possible mis interpretations of the lattice
data.

w xIn lattice determinations 5–7 of the instanton
liquid parameters one usually starts with the assump-
tion that the liquid is dilute enough, i.e. the individ-
ual pseudoparticles are far enough apart that they do
not distort one another considerably. Only then does
the ‘‘instanton size’’ have an unambiguous meaning.
Treating the Qs2 case exactly can be thought of as
the next order approximation when one takes into
account the distorting effect of like charge nearest
neighbour pairs.

To fix the notation, we start with briefly sum-
w xmarising the ADHM construction 8 of the general

w xQs2 solution 9 . Then we discuss the ambiguities
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arising in the identification between the ‘‘physical’’
parameters and the ones appearing in the ADHM
construction, giving rise to two dual descriptions of
the same physical configuration. This duality maps
large separation between the constituents to small

w xseparation 10 and depends non-trivially on the rela-
tive gauge orientation of the two instantons. It has
two important consequences for the identification of
instantons from the charge density profile, most
clearly seen in the two extreme cases. Namely paral-

Žlel and perpendicular relative gauge orientation the
Ž . .SU 2 invariant angle being 0 and pr2 respectively .

If the orientation is perpendicular, the two instantons
cannot be closer to each other than a minimal dis-
tance 2 r r set by their sizes r . If the relative( 1 2 i

orientation is parallel and the two constituents have
the same size r, when they get close to each other,
the charge density looks like the super-imposition of
a small instanton of size proportional to the separa-

'tion, plus another instanton of size 2 r right under
the small one. If the relative orientation and sizes are
not fine tuned, some combination of the above ef-
fects will take place.

The first effect controls how close two instantons
can get to each other. The second one can potentially
hide large instantons from instanton finding algo-
rithms based on the diluteness assumption and
thereby it can significantly distort the instanton size
distribution. In the last part of the paper we present
quantitative data on how these effects are manifested
in realistic lattice situations. This is done by generat-
ing the charge density of instanton pairs, as given by
the exact Qs2 solutions, and comparing the size
distribution thus prescribed by the original data with
that found by lattice instanton finder algorithms. We
observe that the results depend very strongly on the
relative orientation in group space, yielding a strong
suppression of large instantons for parallel orienta-
tion.

2. Physical parameters for Qs2 instantons

The fundamental objects describing the most gen-
Ž .eral SU 2 charge Q instanton solution in the ADHM

construction are the Q-dimensional row vector l and
the Q=Q symmetric matrix B, both having quater-

w x Žnionic elements 8 . A quaternion x can be
parametrised with 4 real numbers as xsx s sxm m 0

.q ix t , where t are the Pauli matrices. Thek k k

ADHM data can be conveniently summarised in a
Ž . Ž .single Q= Qq1 quaternionic matrix D x which

in the Qs2 case can be parametrised as

l l1 2

D x s . 1Ž . Ž .yqzyx u� 0u yyzyx

Ž .D x describes a charge two self dual solution of
the Yang-Mills equations if and only if the matrix
Ž . †Ž . Ž .D x satisfies the ADHM constraint that D x D x

Ž .be real quaternionic i.e. proportional to s and0

invertible. Here l , y, z, and u are quaternionic1,2

parameters, and xsx s denotes a space-time posi-m m

tion. In terms of our parametrisation of the charge
two case, the ADHM constraint reads as

1 † † † †L' l l yl l sz uyu z , 2Ž .Ž .2 1 1 22

where the symbol L is introduced to simplify the
notation. This equation does not specify u unam-
biguously; the most general solution can be written

w xas 9

zL
us qa z , 3Ž .2< <2 z

where a is an arbitrary real constant.
At this point it is instructive to compare this most

general ADHM ansatz with the special case of the ’t
w xHooft ansatz 11 in order to identify the physical

parameters. This special case is obtained for parallel
gauge orientations, l sr s and l sr s real1 1 0 2 2 0

and us0, which solves the ADHM constraint, Eq.
Ž .2 . We can identify r and r as the scale parame-1 2

Ž .ters sizes , and y"z as the locations of the two
instantons. The action density of the solution, valid

w xfor all choices of parameters 12 ,

q x syE 2E 2 logdet D† x D x 4Ž . Ž . Ž . Ž .Ž .m n

indeed agrees in this case with the action density of
the ’t Hooft solution.

The most general charge two ADHM solution can
be described by the following set of free parameters:

< < † Ž < < < <.r s l , the scale parameters; l l r l l g1,2 1,2 1 2 1 2
Ž .SU 2 , the relative gauge orientation; and y"z the
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location of the constituents. This gives a total num-
ber of 13 real parameters, in agreement with the
general result that the charge Q solution has 8Qy3
parameters. For Qs2 the conformal generalisation

w xof the ’t Hooft ansatz 11 also has 13 parameters,
which can be related to the ADHM parametrisation
w x13 .

The charge Q ADHM ansatz is well known to
Ž .have an O Q symmetry acting on the parameters as

l™lTy1 , B™TBTy1 , TgO Q . 5Ž . Ž .
In the Qs2 case, using our parametrisation, the

Ž .SO 2 symmetry amounts to

cos2c sin2cz z™ ,ž / ž /u už /ysin2c cos2c

l lcosc sinc1 1
™ , 6Ž .ž /ž / ž /l ysinc cosc l2 2

while y is left unchanged. The Z transformation2
Ž .that extends this to the full O 2 symmetry is gener-

ated by Tst , which interchanges l with l and1 1 2

changes the sign of z. Different sets of parameters
Ž .related by this O 2 symmetry describe the same

w xphysical solution 13

y11 † † †A x s 1ylF x l E ls F x l ,Ž . Ž . Ž .Ž . Ž .w xm n msn2

Fy1 x 'D† x D x , 7Ž . Ž . Ž . Ž .
Ž .where ls l ,l . At first sight this seems to imply1 2

that we have one less free parameter. This is, how-
ever, compensated by the fact that, in general, solu-
tions to the ADHM constraint with different values

Ž Ž ..of a Eq. 3 result in physically different gauge
field configurations, as one can easily be convinced

Ž †Ž . Ž ..of by computing det D x D x .
Ideally one would like to fix this ambiguity to-

Ž .gether with the O 2 symmetry to have a one-to-one
correspondence between the gauge inequivalent solu-
tions and the 13 parameters describing them. Our
choice of these parameters, which we call
‘‘physical’’, should be as close as possible to a
superposition of two instantons. Looking at the situa-

Ž < < .tion of large separations z large , where the rela-
tive gauge orientation does not play a role, the action
density should be the sum of two instantons of sizes
r located at y"z. This imposes as0, or equiva-1,2

Žlently u z s0. The equivalence of the two condi-m m

Ž . †tions can be easily proved using Eq. 2 and a bq
b†as2 a b which holds for any two quaternions am m

.and b. Choosing this particular solution to the con-
straint ensures that when the orientation of the con-
stituents is parallel, the ADHM solution coincides
with the ’t Hooft ansatz.

With this convention the identification of the
‘‘physical’’ parameters becomes almost unique. The

Ž .prescription is that from each O 2 orbit we have to
choose the point that satisfies u z s0. Generally 1

m m

Ž .there are 16 such points on an O 2 orbit describing
the same gauge field configuration, as has been

w xnoted before 10 . They are generated by rotations
Ž Ž ..see Eq. 6 over multiples of pr4 and the Z2

transformation, l ll , z™yz. Most of these do1 2

not affect the ‘‘physical’’ interpretation. But one
ambiguity remains for which we choose the repre-

Ž .sentative described by the Z symmetry Tst2 1

combined with the rotation over cspr4, providing
the relation

zL
y , z , l , l , us1 2 2ž /< <2 z

l ql l yl1 2 1 2
™ y , u , , , z . 8Ž .ž /' '2 2

We note that if the distance of the two instantons is
< < < <2 z in one description, it is proportional to 1r z in

the ‘‘dual’’ description, as long as the relative gauge
Ž .orientation is not parallel L/0 . Going beyond the

issue of finding a unique parametrisation, the ques-
tion now arises which of these two descriptions is
the ‘‘physical’’ one. To answer this it is instructive
to look at the charge density profile of a set of
solutions with varying separations, keeping the other
parameters fixed.

In Fig. 1 we show such a sequence. The
parametrisation listed is in terms of the l.h.s. of Eq.
Ž .8 . The scale parameters and relative orientation are
described by l s6.6s , l s8.3s , and the sepa-1 0 2 1

ration between the constituents is always along the
Ž .0-axis. When they are far apart A , corresponding to

< <2 z s20.0, the solution indeed looks like a pair of
instantons along the 0-axis. As the separation de-

1 < < < <There are some degenerate cases, when Ls0 or u s z .
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Fig. 1. A pair of size r s6.6 and r s8.3 instantons with1 2

perpendicular relative gauge orientations. The centres are sepa-
< < Ž . Ž .rated along the x axis, the separation, 2 z is 20.0 A , 13.3 B ,0

Ž . Ž . Ž .10.5 C , and 5.0 D . The action density is shown in the 01
plane.

creases the two lumps merge together into an asym-
Ž . Ž < <metric ring B, C 2 z s13.3 and 10.5 respec-

. < < Ž .tively . For even smaller separation: 2 z s5.0, D
in the figure, the two lumps separate again but now
displaced along the 1-axis. Clearly, our parametrisa-
tion is not ‘‘physical’’ any more at this stage; instead
of two very close lumps separated along the 0-axis,
we see two lumps farther apart but along the perpen-
dicular 1-axis. On the other hand, we also have the

Ž Ž ..dual parametrisation r.h.s. of Eq. 8 at our dis-
posal. Indeed, a short computation shows that in the

Ž .dual description of D we have two instantons of the
same scale parameter rs7.5 separated along the
1-axis at a distance of 22, evidently the correct
‘‘physical’’ description.

The general picture emerging from this exercise is
< < < < 2quite clear. When z is large, more precisely z 4

< <L , the original description is ‘‘physical’’, i.e. de-
scribing two superposed instantons separated by a

< < < <distance 2 z . When z is small, however, the dual
description is the more ‘‘physical’’ one. There is an
intermediate region where the solution cannot be
approximated by a combination of two instantons,
here the question which parameter set to use for the
physical description is ill defined.

In the rest of this Section we discuss two simple
consequences of this dual choice of parametrisation.

The first one is that two instantons, as identified
from maxima in the action density, can never get
closer to each other than a minimal distance

< <2 z s 2 r r sinf , 9Ž .(min 1 2

where f is the invariant angle of the relative group
< <orientation. z is defined by the property that themin

two dual descriptions have the same separation
< < < <2 z between the constituents. If z is chosen tomin

be smaller than this, the two instantons ‘‘scatter off’’
in the zL direction and one has to switch to the dual
description. It is also interesting to observe the very
special case when r sr sr and fspr2. In this1 2'< <case, 2 z s 2 r gives a self-dual point where themin

two parametrisations completely coincide and the
Ž .charge density has an axial symmetry in the zL, z

plane. For these parameters the density profile is
w xring-like, not unlike the case of monopoles 14 , but

apparently not noted before for instantons. In particu-
lar, the solution does not degenerate to one with
topological charge Qs1, as conjectured in Ref.
w x10 . This only happens in the case of parallel gauge

Ž Ž .orientation, for r sr and zs0 see Eq. 101 2
.below .

The discussion so far applies only to the L/0
case. Moreover, if ff0, then the switching be-
tween the two parametrisations occurs at very small
< < Ž Ž ..z see eq. 9 and other interesting effects might
come into play when the two constituents are very
close. Let us now look at the extreme situation when
fs0, the relative orientation is parallel and conse-
quently Ls0. In this case the two parametrisations
are

y , z , r s , r s , 0Ž .1 0 2 0

r qr r yr1 2 1 2
™ y , 0, s , s , z . 10Ž .0 0ž /' '2 2

In the limit z™0 the two descriptions become
equivalent, there is no way to choose between them.
One can see that two instantons of scale parameters

Ž .r r ;r on top of each other is equivalent to a1,2 1 2 '< <small instanton of size r yr r 2 on top of a2 1'Ž .larger one of size r qr r 2 . In this extreme2 1

case any lattice instanton finder based on the dilute-
ness assumption would find only the former smaller
instanton and nothing else. Moreover due to the
strongly non-linear character of the Yang-Mills equa-
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tions, when two instantons come close with parallel
orientation, both peaks become narrower and sharper
and are thus identified by any lattice algorithm as
‘‘small’’ instantons. At best one misses one large
instanton in the background; at worst one misinter-
prets two large instantons as two small ones. The
effect is similar at ff0 and can provide a mecha-
nism to hide large instantons as some smooth back-
ground that remains unnoticed by lattice instanton
finder algorithms.

3. The instanton size distribution

We have seen how the identification of single
instanton parameters becomes ambiguous when in-
stantons overlap. We discussed what happens in the
two extreme cases of parallel and perpendicular ori-
entation in group space. In between, some combina-
tion of the two above described effects takes place.
We expect that the exact way this affects the instan-
ton size distributions measured on the lattice will
depend on the relative orientation of nearest neigh-
bour pairs.

In the remainder of the paper we study numeri-
cally how the relative orientation can affect the
lattice instanton size distribution. In order to see the
trends as clearly as possible, instead of trying to
mimic the ‘‘real’’ distribution of relative orienta-
tions, we use two simple orientation distributions:
the Haar measure, and all instantons taken parallel.
Due to the sin2f factor, the Haar measure very

Ž .strongly favours close to perpendicular orientation,
thus our two distributions almost represent the two
possible extremes. We generated the charge density
of a set of instanton pairs with the ADHM construc-

Ž .tion using Eq. 4 . The parameters of the ADHM
ansatz were taken as follows. The instanton scale

Ž .parameters r were distributed independently and1,2

qualitatively similar to that found on the lattice,
Ž .except for an enhanced tail for r large . We artifi-

cially enhanced the tail of the distribution in order to
test whether such a tail can remain undetected by the

< <lattice instanton finders. The separation 2 z was
Gaussian distributed with mean 7.0, and variance of
1.0.

The resulting charge densities – each containing
one pair resolved on a 164 grid – were then analysed

w xusing two different instanton finder algorithms 6,7 .
The details of these algorithms are not relevant in the
present context. However their most important com-
mon feature is that they are both based on the dilute
gas assumption. They identify the highest peaks in
the charge density and estimate the instanton sizes
from the fall-off of the density in the vicinity of the
maximum.

In Fig. 2 we show the instanton size distributions
w x Ž .found by the algorithms of Refs. 6 dotted line and

w x Ž .7 dashed line along with the distribution of the
ADHM size parameters used to construct the charge

Ž .densities solid line , representing the physical choice
of parameters. The Haar measure was used for the
gauge orientation. One of the instanton finders seems
to somewhat suppress the enhanced tail while this
effect is not significant with the other.

In Fig. 3 we plotted the size distributions obtained
when all the pairs were taken parallelly oriented in
group space. All the conventions are the same as in
Fig. 2. Here the two instanton finders both yield a
significantly suppressed tail.

Ž .We also considered ensembles not shown which
in terms of the relative orientation are in between the
two shown. We can draw the following general
conclusion. The two instanton finders display the
same trend; the more parallel the pair is in group

Fig. 2. The instanton size distribution with the relative orientation
being distributed according to the Haar measure. The solid line

Ž .indicates the distribution of the ‘‘physical’’ see text ADHM size
parameter, the dotted and the dashed lines are the size distribu-

w xtions determined by the instanton finder algorithms of Ref. 6 and
w x7 respectively.



( )M.G. Perez et al.rPhysics Letters B 472 2000 295–301´300

Fig. 3. The same as Fig. 2, except the relative orientation in group
space is always chosen parallel.

space the more suppressed the large instantons be-
come. This is partly due to the effect that large
instantons can ‘‘hide’’ under small ones that produce
sharper peaks in the charge density. The other effect
is that, when two instantons come close with approx-
imately parallel orientation, they look narrower 2

and are thus interpreted by the lattice algorithm as
‘‘small’’ instantons

4. Conclusions

To summarise, we studied the question of what
happens when the instanton liquid is not dilute
enough to be considered as a collection of individual
pseudoparticles. The next approximation is to treat
nearest pairs of like charge exactly. We established a
correspondence between the parameters of individual
instantons and the parameters of the charge two
ADHM construction. After fixing most of the ambi-
guities of this correspondence we still have two dual
sets of parameters describing the same charge two
instanton solution. This duality turned out to imply
the existence of a minimal distance between the two
instantons, which is maximal in the case of perpen-

2 In the limit of zero separation and equal sizes this leads to a
Ž .singular instanton on top of the background of a large instanton ,

as discussed in the previous section.

dicular orientation. In the other extreme case of
Ž .nearly parallel orientation, we found that instanton
finders based on the diluteness assumption can have
a tendency to miss large instantons or to underesti-
mate instanton sizes. We numerically confirmed that
this indeed happens for realistic parameters of the
instanton liquid and the effect becomes larger for
orientations closer to being parallel. In fact, a recent
lattice study indicates that like charge pairs strongly
favour parallel orientation compared to the Haar

w xmeasure 15 , therefore the effect we found can be
potentially important.
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