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Abstract

It is shown how in principle for non-Abelian gauge theories it is possible in the finite volume Hamiltonian framework to
make sense of calculating the expectation value of‖A‖2 = ∫

d3x (Aai (�x))2. Gauge invariance requires one to replace‖A‖2

by its minimum over the gauge orbit, which makes it a highly non-local quantity. We comment on the difficulty of finding an
expression for‖A‖2

min analogous to that found for the Abelian case, and the relation of this question to Gribov copies. We deal
with these issues by implementing the Hamiltonian on the so-called fundamental domain, with appropriate boundary conditions
in field space, essential to correctly represent the physics of the problem.
 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The question of a dimension-two condensate in
QCD or in pure gauge theories [1], is a fascinating
one. Condensates are believed to be connected to the
non-perturbative structure of the theory. In a theory
without manifest dimensional parameters the only
evident operator for such a condensate is in terms of
the vector potential itselfV −1‖A‖2. This is certainly
the simplest object one can imagine in a pure gauge
theory, but it suffers from the obvious defect that it is
not gauge invariant and so cannot have any physical
meaning. In perturbation theory this can be remedied
when one replaces the vector potential by its transverse
part, satisfying∂µAµ(x)= 0.

Irrespective of the question if one could separate
off the perturbative contribution, it is not at all clear
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if one can even make sense of calculating〈A2〉 non-
perturbatively. It is only the latter point we address
in this Letter, by using the Hamiltonian framework.
An essential ingredient is to consider‖A‖2

min, which
minimizes‖A‖2 along the gauge orbit. In the Abelian
case this can be expressed in terms of the field
strength [2], with some non-locality involved. In
Section 2 we point out that the difficulty to find a
similar formula for‖A‖2

min in the non-Abelian case is
related to the Gribov copy problem [3].

We will then show in Sections 3 and 4 how the
Hamiltonian formulation in a finite volume, using the
Coulomb gauge [4], can deal with the Gribov issue by
restricting the transverse gauge fields to the fundamen-
tal domain [5,6]. On its boundary,‖A‖2

min is degener-
ate [7], and it is this that allows one to consistently de-
fine 〈A2〉 = 〈0|V−1‖A‖2

min|0〉. Non-perturbative con-
tributions typically arise when the wave functional
starts to reach the boundary of the fundamental do-
main. This has been successfully implemented in the
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past to calculate the low-lying spectrum in a finite vol-
ume (for a review see Ref. [8]).

The finite volume cutoff allows us to define the
contribution coming from the low-lying modes for
which the wave functional is affected by the bound-
ary of the fundamental domain, in terms of an effec-
tive Hamiltonian for these modes. By excluding the
perturbative contributions coming from the modes that
are integrated out, in as far as they donot interact
with the low-lying modes kept in the effective Hamil-
tonian, this gives by construction a finite result. This
is presented in Section 5, and illustrates that〈A2〉, in-
deed, receives a non-perturbative contribution due to
the boundary conditions in field space, properly re-
flecting the non-trivial geometry of the configuration
space [9].

We resist the temptation of subtracting the pertur-
bative result obtained with the effective Hamiltonian,
to avoid the usual difficulties with defining a con-
densate unambiguously. The aim of this Letter is to
demonstrate that there is a way to define〈A2〉 beyond
perturbation theory.

2. Abelian gauge theories

An elegant expression for Abelian gauge theories
exists, that splits‖A‖2 in transverse and longitudinal
parts, which when expressed in momentum space (the
Fourier components are denoted by a tilde)

‖A‖2 =
∫
dnp

F̃µν(p)F̃ ∗
µν(p)

pµpµ

(1)+
∫
dnp

pµÃµ(p)p
νÃ∗
ν(p)

pµpµ
,

holds in any dimension [2]. It relies on the well-known
vector identity

1

2
F̃ µν(p)F̃ ∗

µν(p)

(2)= pµpµÃν(p)Ã∗
ν(p)− pµpνÃµ(p)Ã∗

ν(p),

useful in setting up perturbation theory. Since mini-
mizing ‖A‖2 along the gauge orbit implies the gauge
field at this minimum satisfies the gauge condition
∂µAµ(x)= 0, orpµÃµ(p)= 0, this implies we have

a gauge invariant expression for‖A‖2
min,

(3)‖A‖2
min =

∫
dnp

F̃ 2
µν(p)

pµpµ
,

with only a limited amount of non-locality.
There is a small problem to address here because

p2 cannot be inverted for zero-momentum. In coordi-
nate space this could give rise to boundary terms [2].
The problem persists with periodic boundary condi-
tions also. This is interesting in that it reveals a subtle
issue related to Gribov copies [3], which are essential
to the non-Abelian problem.

With boundary conditions periodic in a lengthL,
the integral over momenta is replaced by a sum. The
zero-momentum components ofFµν and ∂µAµ van-
ish, but not those forAµ. This means that we have to
replace‖A‖2

min by ‖A‖2
min− Ã∗

µ(0)Ã
µ(0)= ‖A‖2

min−
L−n(

∫
dnx Aµ(x))

2. This may seem an insignificant
modification asL → ∞, but it is exactly what is
needed to deal with the problem of Gribov copies: dif-
ferent gauge fields related by a gauge transformation
that satisfy the gauge condition∂µAµ(x)= 0, but for
which the value of‖A‖2 differ.

These Gribov copies can even be present in the
Abelian theory (for finite volume and periodic bound-
ary conditions). However, the difference inA between
Gribov copies in this case has zero momentum. Af-
ter all, with [h]Aµ(x) the gauge field obtained by
a gauge transformationh(x) from Aµ(x), requiring
∂µ([h]Aµ(x))= ∂µAµ(x)= 0 implies∂2

µ logh(x)= 0.
This fixes the allowed gauge transformations to be of
the form h(x) = exp(2πixµnµ/L), with nµ integer
(as imposed by the periodic boundary conditions). It
means that the difference in‖A‖2 between different
Gribov copies is only in the zero-momentum compo-
nent and we have

‖A‖2 −L−n
(∫

dnx Aµ(x)

)2

(4)

=
∑
p �=0

F̃ µν(p)F̃ ∗
µν(p)

pµpµ
+

∑
p �=0

pµÃµ(p)p
νÃ∗
ν(p)

pµpµ
,

and

‖A‖2
min −L−n

(∫
dnx Aµ(x)

)2
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(5)=
∑
p �=0

F̃ µν(p)F̃ ∗
µν(p)

pµpµ
.

This formula is also correct when instead of taking
the absolute minimum we have a stationary point. It
is this that causes the Gribov problem: there are many
stationary points of‖A‖2 along a given gauge orbit,
where at each of these stationary points the (Coulomb
or Landau) gauge condition∂µAµ(x) = 0 holds. For
Abelian gauge theories, this problem only occurs in a
finite volume with periodic boundary conditions and
the Gribov copies can be fully classified in terms of
the zero-momentum component of the gauge field.

It is amusing to observe, since the vector identity
is still true, that in the non-Abelian theory (in a finite
volume with periodic boundary conditions) we may
again write

‖A‖2 −L−n
(∫

dnx Aaµ(x)

)2

(6)

=
∑
p �=0

f̃ aµν(p)f̃ a∗µν (p)
pµpµ

+
∑
p �=0

pµÃaµ(p)p
νÃa∗ν (p)

pµpµ
,

with f aµν(x)= ∂µAaν(x)− ∂νAaµ(x) and

‖A‖2
min −L−n

(∫
dnx Aaµ(x)

)2

(7)=
∑
p �=0

f̃ aµν(p)f̃ a∗µν (p)
pµpµ

.

This reveals at once the problem for the non-Abelian
case: the right-hand side involving only the “curl”
part of the field tensor is not gauge invariant, and
the problem of Gribov copies cannot be restricted to
the zero-momentum component of the gauge field.
Indeed, explicit examples are known that illustrate this
point [7]. Minimizing along the gauge orbit has the
complexity of a spin glass problem, with many local
minima, which from the computational point of view
makes it in practice impossible to identify the absolute
minimum.

3. Non-Abelian gauge theories

We have seen that there appears to be no simple
gauge invariant expression for‖A‖2

min in non-Abelian

gauge theories, even allowing for non-locality. Cer-
tainly a formula for ‖A‖2 similar to the Abelian
case, where we have a gauge invariant expression plus
something vanishing at the stationary points of‖A‖2

cannot apply. This would give the same value for‖A‖2

at Gribov copies, while we know on the contrary that
generically‖A‖2 is different for such copies.

Therefore, we would like to turn to the Hamiltonian
picture of non-Abelian gauge theory to provide some
insight into the question of‖A‖2

min. What we would
like to find is that in a certain sense‖A‖2

min viewed as
a quantum-mechanical operator can have a non-trivial
expectation value, as we shall now explain.

In the Hamiltonian picture [4], whereA0 = 0,
one considers wave functionals on field space. The
“coordinates” are the spatial components of the vector
potential at every point in ordinary space�x, Aai (�x).
In a lattice formulation, for example, there can be a
finite number of coordinates. Or in momentum space
one may useÃai (�k) as the variables. In any event we
imagine a wave function in these coordinatesΨ (A).

Now in the simplest case of a free Abelian the-
ory, one has a problem equivalent to the ordinary har-
monic oscillator for the modes in momentum space.
Evidently, there is a non-zero value of‖A‖2 for each
mode, since this is just the spread of the wave function
in the ground state of the oscillator. This is what one
expects for the ordinary vacuum and we shall call this
the “perturbative contribution”, since when summed
over all modes it represents the well-known (infinite)
zero-point motion of free fields.

WhenA becomes largeΨ will be sensitive to the
A3 andA4 terms in the potential energy12B

a
i (�x)2,

with Bai (�x) the Yang–Mills magnetic field. These
correspond to the non-linearities of the theory and
determine the directions in whichΨ (A) can spread.
When Ψ (A) can no longer be neglected near the
boundary of the fundamental domain, it is sensitive to
the boundary conditions required to make the problem
well defined. It is this that can no longer be described
in perturbation theory, leading to non-perturbative
contributions.

The implementation of the Hamiltonian approach
depends very much on whether and how the gauge
condition ∂iAi(�x) = 0 is handled. In principle, one
may not apply any condition of this type at all and sim-
ply assume that theΨ is constant in gauge directions,
that is, constant over a gauge orbit. Although this is
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conceptually simple and is usually the approach in lat-
tice simulations, it is remote from standard perturba-
tion theory and difficult to apply for concrete Hamil-
tonian calculations. In particular for our present ques-
tion this would necessitate an explicit gauge invariant
expression for an‖A‖2

min operator, which as explained
in the previous section, we do not have.

The more common approach in the Hamiltonian
method is thus to formulate the problem in terms of
one representativeA field configuration on a gauge
orbit in order to reduce the number of variables. This
configuration is found by imposing∂iAi(�x) = 0 and
one then uses the Faddeev–Popov method to find the
volume of the gauge orbit when integrating overA
configurations [9]. However, this leads to the problem
of Gribov copies, since in the non-Abelian case there
is more than oneA configuration with∂iAi(�x)= 0 on
a given gauge orbit. For the question of‖A‖2

min the
existence of Gribov copies means that∂iAi(�x)= 0 no
longer determines that configuration where‖A‖2 is an
absolute minimum.

A way of dealing with these complications is to
define a fundamental domain [5] where there is only
oneA configuration with∂iAi(�x) = 0 on each gauge
orbit. Restricting the variables to this domain leads to
a well-defined quantum-mechanical problem, where
we may calculate the expectation value ofA2. The
price of this simplification, however, is a complicated
topology inA space on the boundary of this domain,
as we shall now explain. To keep things well defined,
we introduce a finite volume in ordinary space as an
infrared cutoff, like the torusT 3 or the sphereS3. For
the torus, zero-momentum modes have to be treated
carefully, but one has learned how to deal with this,
see a recent review in Ref. [8].

The Hamiltonian formalism provides more intu-
ition on how to deal with non-perturbative contribu-
tions in situations where semi-classical techniques can
no longer be used. The high energy modes can be well-
approximated by harmonic oscillator contributions to
the wave functional. In the direction of these field
modes the potential energy rises steeply. Their con-
tributions, which include regulating the ultraviolet be-
havior, can presumably be treated perturbatively, in
particular giving rise to the running of the coupling
constant.

The finite volume allows us to have a well-defined
mode expansion in momentum space. Due to the clas-

sical scale invariance, the Hamiltonian can be formu-
lated in terms of dimensionless fields. This can be ex-
tended to the quantum theory, as Ward identities allow
for a field definition without anomalous scaling. Thus
we absorb the bare coupling constant in the gauge
field. In these conventions the field strength is given, in
termsAi(�x) = Aai (�x)T a (T a the anti-Hermitian gen-
erators, normalized according to tr(T aT b)= −1

2δab),
by

Fij (�x)= Faij (�x)T a

(8)= ∂iAj (�x)− ∂jAi(�x)+
[
Ai(�x),Aj (�x)

]
and the Hamiltonian density reads

(9)H(�x)= −1

2
g2

(
∂

∂Aaj (�x)
)2

+ 1

2g2

(
Baj (�x)

)2
,

where Bak (�x) = 1
2εijkF

a
ij (�x). When all fields and

coordinates are expressed in units ofL (with Qai (�x)
the usual expression for the gauge field,Aai (�x) =
gLQai (L�x)), apart from the overall scaling dimension
of the Hamiltonian (1/L), only the running coupling
introduces a non-trivial volume dependence [8].

Therefore, the only sensitivity to the length scaleL
is through an increasing coupling as we increaseL.
An increasing coupling will cause spreading of the
wave functional, simply because the overall strength
of the potential (proportional to 1/g2) is reduced. The
essential additional ingredient required to address non-
perturbative effects is the boundary conditions infield
space, at the boundary of the fundamental domain.
Only in this way can gauge invariance be implemented
properly at all stages. On the other hand, asymptotic
freedom guarantees that in small volumes the running
coupling is small and it thus keeps the wave functional
localized near the classical vacuum manifold. What
has become clear [8] is that the transition from finite
to infinite volume is driven by field fluctuations that
cross the barrier which is associated with tunneling
between different classical vacua. This is natural,
since this barrier (the finite volume sphaleron, which
will typically lie on the boundary of the fundamental
domain), will be the direction beyond which the
wave functional can first spread most significantly, as
it provides the lowest mountain pass in the energy
landscape.
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4. The fundamental domain

We will summarize how to completely fix the
gauge and show that the boundary of the fundamental
domain, unlike its interior, has gauge copies that
implement the non-trivial topology of field space.
The essential observation that allows one to define
‖A‖2

min as a proper gauge invariant quantity is that
this minimum along the gauge orbit is degenerate
when the associated gauge fields (by definition related
by a gauge transformation) represent points on the
boundary of the fundamental domain that are to be
identified.

Restricting to three space dimensions, we will now
be a bit more precise about how to minimize theL2

norm of the vector potential along the gauge orbit [5,
6] (recall that the vector potentialAi(�x) is anti-
Hermitian).

(10)

∥∥[h]A∥∥2 = −
∫
M

tr
((
h−1(�x)Ai(�x)h(�x)

+ h−1(�x)∂ih(�x)
)2)
.

The integral over the finite spatial volumeM is
with the appropriate canonical volume form. We
introduce the short-hand notation[h]A for a gauge
transformationh(�x). Expanding around the minimum
of Eq. (10), writingh(�x) = exp(X(�x)) (X(�x) is, like
the gauge fieldAi(�x), an element of the Lie-algebra)
one easily finds∥∥[h]A∥∥2

= ‖A‖2 + 2
∫
M

tr(X∂iAi)+
∫
M

tr
(
X†FP(A)X

)

+ 1

3

∫
M

tr
(
X

[[Ai,X], ∂iX
])

(11)+ 1

12

∫
M

tr
([DiX,X][∂iX,X]) +O

(
X5),

whereFP(A) is Faddeev–Popov operator(ad(A)X ≡
[A,X])

(12)FP(A)= −∂iDi (A)≡ −∂i
(
∂i + ad(Ai)

)
.

At a local minimum the vector potential is therefore
transverse,∂iAi = 0, andFP(A) must be a positive
operator. The set of all these vector potentials is by

definition the Gribov regionΩ . Using the fact that
FP(A) is linear in A, Ω is seen to be a convex
subspace of the set of transverse gauge fieldsΓ . Its
boundary∂Ω is called the Gribov horizon. At the
Gribov horizon, thelowestnon-trivial eigenvalue of
the Faddeev–Popov operator vanishes, and points on
∂Ω are associated with coordinate singularities. Any
point on∂Ω can be seen to have a finite distance to the
origin of field space and in some cases even uniform
bounds can be derived [10,11].

The Gribov region is the set oflocal minima
of the norm functional, Eq. (10), and needs to be
further restricted to theabsoluteminima to form the
fundamental domain [5], which will be denoted byΛ.
The fundamental domain is clearly contained within
the Gribov region. To show that alsoΛ is convex, we
define an operatorFPf (A) via∥∥[h]A∥∥2 − ‖A‖2

=
∫
M

tr
(
A2
i

) −
∫
M

tr
((
h−1Aih+ h−1∂ih

)2)

=
∫
M

tr
(
h−1FPf (A)h

)
,

(13)FPf (A)≡ −∂i(∂i +Ai),
(remember that in our conventions tr(A2

i ) is negative),
where FPf (A) acts on Lie-group valued functions
and is similar to the Faddeev–Popov operator (which
acts on Lie-algebra valued functions). BothFP(A)
and FPf (A) are Hermitian operators whenA is a
stationary point of the norm functional, i.e., forA
transverse. The fundamental domainΛ is the set of
gauge fieldsA for which Eq. (13) has its minimum
at zero when varyingh over the gauge group. (If
this minimum is unique it occurs forh = 1.) Using
that FPf (A) is linear in A, the convexity ofΛ is
automatic: A line connecting two points inΛ lies
within Λ.

If we would not specify anything further, since a
convex space is contractible, the fundamental region
could never reproduce the non-trivial topology of
the field space. This means thatΛ should have a
boundary [7]. Indeed, asΛ is contained inΩ , this
meansΛ is also bounded in each direction. Consider
a gauge orbit and two gauge configurations on it,
giving the absolute and first relative minimum of
‖A‖2, respectively. In general the two configurations
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are connected by a finite, or even a “big”, gauge
transformation. Now take the “ray” that extends from
the relative minimum configuration toA = 0. There
it will have ‖A‖2 = 0. Its gauge copy, initially an
absolute minimum, will also vary continuously as we
go along the ray towardsA= 0, but will not in general
have‖A‖2 = 0 at the end of the variation. Therefore
the norms of each of these two configurations must
pass each other during this variation. At the crossing
we have degenerate minima of‖A‖2 at distinct points
on the gauge orbit. These correspond to different
points of the boundary ofΛ, identified by gauge
equivalence. This gives the problem its non-trivial
topology.

WhenL denotes the linear size of the spatial vol-
umeM, we may express the gauge fields in the di-
mensionless combination ofLA (in our conventions
the fields have no anomalous scale dependence), and
the shape and geometry of the Gribov and fundamen-
tal regions are scale independent. We should note that
the norm functional is degenerate along the constant
gauge transformations and indeed the Coulomb gauge
does not fix these gauge degrees of freedom. We sim-
ply demand that the wave functional is in the singlet
representation under the constant gauge transforma-
tions. Therefore, withG the gauge group,Λ/G rep-
resents the gauge invariant configuration space, for
whichΛ is assumed to include the non-trivial bound-
ary identifications that restore the non-trivial topology
of this space.

If a degeneracy at the boundary is continuous, other
than by constant gauge transformations, one neces-
sarily has at least one non-trivial zero eigenvalue for
FP(A) and the Gribov horizon will touch the bound-
ary of the fundamental domain at these so-called sin-
gular boundary points. We sketch the general situation
in Fig. 1. In principle, by choosing a different gauge
fixing in the neighborhood of these points one could
resolve the singularity. If singular boundary points
would not exist, all that would have been required
is to complement the Hamiltonian in the Coulomb
gauge with the appropriate boundary conditions in
field space. Since the boundary identifications are by
gauge transformations the boundary condition on the
wave functionals is simply that they are identical under
the boundary identifications, possibly up to a phase in
case the gauge transformation is homotopically non-
trivial.

Fig. 1. Sketch of the fundamental (shaded) and Gribov regions,
embedded in the space of transverse gauge fields (Γ ). The dotted
lines indicate boundary identifications.

Singular boundary points are to be expected [7].
Generically, at singular boundary points the norm
functional undergoes a bifurcation moving from inside
to outside the fundamental (and Gribov) region. The
absolute minimum turns into a saddle point and two
local minima appear. These are necessarily gauge
copies of each other. The gauge transformation is
homotopically trivial as it reduces to the identity at the
bifurcation point, evolving continuously from there
on.

The necessity to restrict to the fundamental domain,
a subset of the transverse gauge fields, introduces a
non-local procedure in field space. This cannot be
avoided since it reflects the non-trivial topology of this
space. We stress again that its topology and geometry
are scale independent. Homotopical non-trivial gauge
transformations are in one to one correspondence with
non-contractible loops in field space, which give rise
to conserved quantum numbers. The quantum num-
bers are like the Bloch momenta in a periodic poten-
tial and label representations of the homotopy group
of gauge transformations. On the fundamental domain
the non-contractible loops arise through identifications
of boundary points. Although slightly more hidden,
the fundamental domain will, therefore, contain all the
information relevant for the topological quantum num-
bers. Sufficient knowledge of the boundary identifica-
tions will allow for an efficient and natural projection
on the various superselection sectors. Typically we in-
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tegrate out the high-energy modes, being left with the
low-energy modes whose dynamics is determined by
an effective Hamiltonian defined on the fundamental
domain (restricted to these low-energy modes). In this
it is assumed that the contributions of the high-energy
modes can be dealt with perturbatively, generating the
running coupling and the effective interactions of the
low-energy modes.

With the boundary identifications implemented,
and the fact that by construction‖A‖2

min respects these
boundary identifications,

(14)

〈0|‖A‖2
min|0〉 ≡

∫
Λ

µ(A)DAΨ ∗
0 (A)‖A‖2

minΨ0(A)

is in principle well-defined, and could form the basis
for establishing the existence of a non-perturbative di-
mension two condensate. HereΨ0(A) is the ground-
state wave functional, andµ(A) is the appropriate
measure on field space [4,9], the integral assumed to
be confined to the fundamental domainΛ of the trans-
verse gauge fields.

5. Small volume results

In a small volume with periodic boundary condi-
tions the running coupling is small and one can use
perturbation theory. To lowest order the wave func-
tional is simply a product of harmonic oscillators for
each of the field modes. The zero-momentum modes,
however, need to be treated separately since the poten-
tial in this sector is quartic. In computing〈0|‖A‖2

min|0〉
we use for these zero-momentum modes the ground-
state wave function belonging to the Hamiltonian of
Eq. (9), truncated to the zero-momentum modes,

(15)H0 = − g
2

2L

(
∂

∂caj

)2

− 1

2g2L
tr
([cj , ck]2),

where we definedL−3
∫
d3x Aaj (�x)= caj /L andcj =

caj T
a . A simple rescaling of the fields with a factor

g2/3 shows that the energies of this truncated Hamil-
tonian are proportional tog2/3/L and that the zero-
momentum contribution to〈A2〉 ≡ L−3〈0|‖A‖2

min|0〉
is proportional tog4/3/L2.

It is in the direction of the zero-momentum modes
that the wave functional will first reach the bound-
ary of the fundamental domain for increasing coupling

(due to an increase in the volume). There is no classi-
cal potential along the direction of the Abelian zero-
momentum modes (for which the commutator[ci, cj ]
vanishes) and the boundary of the fundamental domain
in these Abelian zero-momentum components can be
shown [8] to occur at(cai )

2 = π2. Lüscher [12] has de-
rived an effective Hamiltonian for the zero-momentum
modes that incorporates the higher order corrections
due to the interactions with the non-zero momentum
modes, using so-called Bloch perturbation theory [13].
Amongst other things, this turns the bare coupling
constant into a running couplingg(L). It is beyond the
scope of this Letter to describe the details of this calcu-
lation, but we remark that an efficient way to compute
〈0|‖A‖2

min|0〉 is by addingλ(Aaj (�x))2 to the Hamil-
tonian density of Eq. (9). HereAaj (�x) is assumed to be
transverse and to lie within the fundamental domain.
We will consider volumes where the restriction to the
fundamental domain is felt for the zero-momentum
modes only, such that we can integrate out the non-
zero momentum modes perturbatively. The resulting
effective Hamiltonian will contain a term depending
on λ, but independent of the zero-momentum gauge
field. This term will be dropped, as its value and its
derivative with respect toλ, at λ = 0, can be inter-
preted as the perturbative contribution to the vacuum
energyE0, respectively〈0|‖A‖2

min|0〉. Keeping only
the terms in the effective Hamiltonian that depend on
the zero-momentum gauge field (and onλ) we may
calculate the groundstate energy as a function ofλ.
Its derivative atλ = 0 gives the finite volume non-
perturbative contribution to〈0|‖A‖2

min|0〉.
Adding a mass term in the zero-momentum sector

seems to remove the quartic nature of the potential.
However, as rescaling the zero-momentum component
of the gauge field withg2/3 reveals, the term quadratic
in the zero-momentum gauge field is proportional
to g4/3, and hence of lower order. As a matter of
fact, the quantum corrections induce a term of this
order in the effective Hamiltonian [12]. In Fig. 2 we
illustrate forSU(2) the lowest order result, with and
without incorporating the boundary conditions, based
on Ref. [14] (in terms of the terminology introduced
there, the lowest order result is type IIIA with, and type
IIIC without incorporating the boundary conditions;
the computer code used here is essentially the one
developed for that paper). In this figure we have
shown the result up tog = 2.9, which corresponds
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Fig. 2. On the left is shownLE0 and on the rightL2〈A2〉 for SU(2), after subtracting the perturbative contribution as discussed in the text, both
as a function ofg(L). The full lines give the lowest order result, 4.11672g2/3(L), respectively 3.89775g4/3(L). The dashed lines include the
effect of the boundary conditions, for the lowest order effective Hamiltonian. The dotted lines include higher order contributions to the effective
Hamiltonian (see the discussion in the text).

roughly to a volume of a cubic fermi. For larger
volumes the wave functional will have spread in
other directions as well, such that the perturbative
approximation for these non-zero momentum modes
no longer holds. Here we only wish to illustrate
the influence boundary conditions in field space can
have. It should, however, be understood that where
a deviation starts to occur, the coupling is already
sizable and a fully self-consistent calculation requires
us to also include the higher order contributions to
the effective Hamiltonian. To give a flavor of the
magnitude of these corrections we show with the
dotted curves the result obtained when ignoring the
dependence of the groundstate wave function onλ.

6. Conclusion

We have shown how we can in principle define
〈A2〉 asL−3〈0|‖A‖2

min|0〉 in a Hamiltonian formalism,
which restrictsA to the fundamental domain. No two
gauge fields in the interior of the domain are gauge
equivalent, but gauge fields on the boundary in general
do have gauge copies, also on the boundary. Crucial
for defining〈0|‖A‖2

min|0〉 is that‖A‖min takes on the
same value for these gauge equivalent gauge fields (as
is intrinsic to the definition of the boundary of the
fundamental domain).

To lowest order, in a small volume, this expectation
value is generated in the usual way by adding the
appropriate source to the Hamiltonian. The resulting

effective Hamiltonian is specified in terms of the
gauge field components that will feel the boundary
of the fundamental domain, which in a cubic finite
volume smaller than about 0.75 cubic fermi means an
effective Hamiltonian in terms of the zero-momentum
modes. Although in this domain there is near perfect
agreement with the low-lying spectrum obtained from
lattice gauge theory, it is known that larger volumes
are required to get close to the infinite volume limit.
Nevertheless, we have shown a framework in which
we can make sense of this quantity, even though its
applicability is for technical reasons still limited to a
finite volume.
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