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We give the semiclassical evaluation of the energy of electric flux in units of the 0** glueball mass for
SU(3) gauge theory and predict a crossover in this quantity around z =1.6. The parameter z is the
length of the sides of a cubic volume (the three-torus) in units of the inverse glueball mass. We discuss
lattice gauge theory in the context of a finite volume and compare our analytic prediction with recent

SU(3) Monte Carlo results.
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Recently much progress has been made in understand-
ing finite-size effects in SU(NV) gauge theories by use of
analytic techniques. These analytic results are all based
on the Hamiltonian picture, with gauge fields defined on
a three-torus, which for convenience only is chosen to be
a cube with sides L. The gauge fields satisfy periodic
boundary conditions. This therefore describes a system
with zero magnetic flux' and is the relevant framework
for comparison with Monte Carlo calculations on a finite
lattice.2 In these Monte Carlo calculations, one likes to
be close to the continuum by choosing a small lattice
spacing a (through the renormalization group by choos-
ing a small coupling constant go). But since computer
limitations force us to restrict ourselves to a finite num-
ber of lattice sites (say IV, in each spatial direction and
N; in the time direction), the necessity of small a com-
petes with requiring a large value for L = N;a, the size of
the volume.

Essential progress was made when it was realized that
there could be a window in a (or g¢) for which both lat-
tice artifacts and finite size effects are small.®> Further
progress was hampered by the lack of a precise under-
standing of both types of corrections. Despite a tremen-
dous increase in computer power over the last decade,
closer scrutiny and recently developed awareness based
on the nonperturbative B function and the lattice ar-
tifacts in large scale computations** make it difficult to
keep the window open. However, the form of the non-
perturbative B function is irrelevant for dimensionless
ratios. This was dramatically clear in the reanalysis® of
data’ for the “string tension” K (for a further discus-
sion on the meaning of K, see below) and the mass gap
M) in units of Aj.y as a function of the universal scale
parameter® z=M;L. If one considers the ratio
\/I?Z/ML first introduced in Ref. 6, one obtains close to
universal behavior, even at points for which \/—K—L/Ahm or
Mp/Aw  separately would not support universal
behavior, if the two-loop B function were used to convert
lattice to physical units. In conclusion this implies that
the bulk of the deviation of the data for \/K;/Apx and
M| /A from a universal curve is due to a substantial
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deviation of the two-loop B function from its nonpertur-
bative counterpart, whereas lattice artifacts seem to be
absent within the quoted errors.

Consequently, it is easier to make a connection be-
tween Monte Carlo lattice results and continuum gauge
theories in a finite volume. Since in a sufficiently small
volume the effective renormalized coupling constant is
small, analytic calculations are feasible and one can at-
tempt to make a quantitative comparison. This could
provide a desirable confidence in Monte Carlo calcula-
tions and can be used to work oneself outward reliably to
larger distances. At the same time these reliable Monte
Carlo results as a function of the universal scale parame-
ter z will provide valuable information on the physics of
non-Abelian gauge theories. One important issue in this
approach would be to decide from what value of z on-
wards the large-volume expansion for the mass gap®!? is
valid. It would allow total control over the infinite-
volume glueball mass determination.

Less ambitiously, we will settle for a good control over
the small-volume behavior. Perturbation theory was first
set up by Liischer.!! The theory is complicated by the
(self-) interacting zero-momentum modes. The low-
lying energy levels (E) can be calculated as a power
series in g2, where g is the renormalized coupling con-
stant for SU(N) gauge theories at a scale L [in the
modified minimal-subtraction (MS) scheme]:

g 2N, L)=—11NIn(AL)/Q4x>) + - - -, 1)
EWN,L)=L"! f; ex(N)g(NV,L)*/3, ()
k=1

For SU(2) the numerical values of g for k =1-4 and
for a few low-lying energy levels were calculated by
Liischer and Miinster!2 and recently for SU(3) by Weisz
and Ziemann.'* These results are collected in Table I
for the ground state and the first excited 0% * state. The
difference between the ground-state energy and the first
excited 0%t energy is the 0%+ glueball mass M, (0% ),
and thus gives the universal expansion parameter
z=M;(0**)L as a power series in g%3. These results
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are valid as long as tunneling between different vacua is
suppressed. Gauge transformations, periodic up to an
element of the center of the gauge group, map one vacu-
um into the other. These are the gauge transformations
considered by 't Hooft in defining electric flux on the
torus.! The energy splitting AE of the ground state can
therefore be identified as the energy of 't Hooft-type
electric flux. Once the energy of electric flux becomes
appreciable the perturbative results for the energy levels
break down.

This energy of electric flux was considered elaborately
in previous work®!%!3 for SU(2), whereas in Ref. 15

also the leading result for arbitrary SU(V) was given. In this Letter we give the result (details will be

separately) beyond this leading order:

= "1'21
AE(L)=2L sm[N

up to a relative error which is a positive power of the re-
normalized coupling constant. In this formula we have
the following expressions for Sy (the tunneling action),
Ty (the tunneling time), and Ay (a contribution from

transverse fluctuations'>!6)
Sn ==-2-(;1/V—T,21)S, S=12.4637.. ., (42)
TNﬁT, T=39186.. ., (4b)
AN "—2—(21\1;’%/21)1, A =0.6997. ... (4¢)

Unfortunately By and &, (V) have no simple N de-
pendence. By definition & (1) =0. In Ref. 6 it was
found that B, =0.206; B3 is expected to be of the same
order of magnitude and can in principle be calculated
from the wave function for the ground state found in
Ref. 13. By use of Eq. (2) and Table I, Eq. (3) can be
converted into an equation for (z) =AE (L)/M; (0% ™).

We will now discuss the consequences of Eq. (3).
Since the two terms in the exponent of Eq. (3) differ in
sign one obtains as a good approximation for the point of
crossover beyond which AE becomes appreciably dif-
ferent from zero

N =1)S }

e (N)—ee(N—=DIT |~

Using of the values of Eq. (4a), (4b), and Table I we ob-
tain g.(2)2=0.461 and g.(3)>=0.423. The tunneling is,
unlike for the ordinary instantons, through a quantum-
induced potential barrier.!'* This is why the tunneling
sets in at small values of the renormalized coupling con-
stant. Using of the expansion of z in powers of g3
which can be obtained from Table I, we predict the
crossover for SU(3) to occur at z = 1.6 [for SU(2) we
verify z = 1.16]. It should be pointed out that the glue-
ball mass which enters the definition of z, is also affected
by tunneling. Our prediction does not take this into ac-
count; neither do we take into account higher-order

gcz(N)ﬂ (5)
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TABLE I. Coefficients for the ground state and the first ex-
cited 0% state, defined in Eq. (3) for SU(2) (Ref. 12) and
SUQ@3) (Ref. 13).

e (N) &£(N) £3(N) e4(N)
SUQ2) 4.116719735 —1.174516027 —0.118933 —0.03148
6.3863588 —1.9720438 —0.438 —0.176
SU(3) 12.5887 —4.0628 —0.4280 —0.104
15.38 —4.79 —-0.57 —-0.08
published
| By | Ang (N, L) Pexp{—Sng (N,L) "'+ Tyley(N) — e, (N —1)1g (VL) ~V/3}, 3)

corrections to Eq. (3) which might be larger than we
hope for the values of g? we consider.

We will now compare with existing Monte Carlo data.
It is essential that the lattice is sufficiently big in the
time direction, since the analytic results are in the Ham-
iltonian formulation at zero temperature. How large the
lattice has to be in the time direction is determined by
the energy resolution one wants to achieve. If tunneling
has set in, all masses are of the order of the glueball
mass. In that region a safe criterion is to have
N;z/Ns>1 (ie., the temperature in units of the 07+
glueball mass is small). This criterion is satisfied for the
calculations of Berg, Billoire, and Vohwinkel!” and Patel
et al.'® If the condition is not satisfied (i.e., z < N,/N,)
the Monte Carlo data can presumably be compared in-
stead with the results of Coste er al.!® However, it is
critical to notice, if one is interested in the energy of
electric flux, that when tunneling is suppressed the ener-
gy resolution must be of the order of AE, which is very
small. This is a practical obstacle to performing Monte
Carlo calculations of AE at values of z smaller than the
value where tunneling sets in. It was realized in Ref. 6
(see also Ref. 15) that Monte Carlo data for time-time
correlation functions of the spatial Polyakov loops in the
fundamental representation?® gives exactly the energy of
’t Hooft-type electic flux. Consequently, for finite L,
the quantities K;”'7 and o(L)'® are nothing but
AE (L)/L, which only for large L is expected to give the
true string tension. The 0% glueball mass was deter-
mined either by the time-time correlation function for
the spatial Polyakov loop in the adjoint representation,
giving a good signal for 15z S5,'7 or for the 2x2 Wil-
son loops, with a good signal for larger z.'® In Fig. 1 we
represent these Monte Carlo data by plotting
E=AE(L)/M;(0*") as a function of z=M (0" ¥)L.
Although in this case not enough data are available to
verify universality, experience with the SU(2) results®
tells us that at least for the smaller z values lattice ar-
tifacts should be small. Note also that the two data
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FIG. 1. Results for the energy of electric flux as a function
of L, converted to dimensionless units with the 0%+ glueball
mass [6 =AE/M (0**), z =M (0**)L], for SU(3). Indicat-
ed is the analytic prediction for the crossover value of z (for
smaller z, & is practically zero) and Monte Carlo data for a
N&xN, lattice. Triangles: N;=4, N,=32. Circles: N,=6,
N, =32 (Ref. 17). Squares: N, =6, N,=21. Crosses: N;=9,
Ny =21 (Ref. 18).

points around z =5, arising from different ways to calcu-
late the glueball mass, are consistent with each other.
[Let us point out that Ref. 17 uses the definition
z=M;(2* )L, at odds with previous works.®®1?] A
more accurate way to determine the point of crossover is
to use the spatial Polyakov loop in the fundamental rep-
resentation as a signal, in a fashion similar to extracting
the deconfining temperature.?’ To be more precise, one
tests with a given lattice for the value of go where metas-
tablity sets in and calculates M; (0% *) for that value of
go. This gives the crossover value of z, which should not
depend on the lattice size N; (provided N,> N,). It is
in the domain close to metastability that evaluation of
the energy of electric flux becomes numerically impracti-
cal. It is important to observe, however, that there is a
marked difference from the deconfining transition.! In
our case the crossover, although rapid, is smooth and the
expectation value of the absolute value of the spatial Po-
lyakov loop remains reasonably close to one over the
crossover; the onset of tunneling causes the phase of the
spatial Polyakov loop to fluctuate rapidly. The effective
potential which describes the tunneling® changes very lit-
tle though, because of the smallness of the coupling con-
stant. Consequently, one should classify the domain for
z a little larger than 1.6 as a perturbative domain. Fig-
ure 1 shows that there is a discrepancy between the
Monte Carlo data, which has a data point for z as small
as 1.2£0.2, and our analytic prediction which implies
that & is essentially zero for z <1.6. This might be
caused by the inaccuracy of the semiclassical approxima-
tion for g2~0.4, and calculations going beyond the semi-
classical approximation, but with use of the one-loop ef-
fective Hamiltonian,!> are in progress. However, as
pointed out earlier, for g even a little smaller than g, the
Monte Carlo calculations in Ref. 17 are not at zero tem-
perature compared to the energy of electric flux. If

indeed tunneling sets in for z ~1.6, it could be that the
two data points (see Fig. 1) for z <1.6 measure finite-
temperature artifacts instead of the energy of electric
flux. Since details on the Monte Carlo analysis of Ref.
17 are not yet available, we cannot assess these problems
in the numerical part of the analysis.

Only for substantially larger values of z will one ap-
proach the truly nonperturbative domain and for four
reasons it is expected to be associated with a crossover
around z ~5%%2 (i) This is the value one would obtain
from the finite temperature intuition by putting
L =1/T,; (ii) it is the value where the square-root singu-
larity in the Nambu-Goto expression for & occurs; (iii) a
second crossover is expected because of the tunneling by
“normal” instantons; and (iv) the separation of zero and
nonzero momentum modes is likely to fail when the glue-
ball mass is of the order of energy of a typical nonzero
momentum state (E =2x/L), which hence, is expected
to occur around z =2x. Let us stress that this second
crossover is also not a phase transition, because of the fi-
nite volume. The existence of a second crossover would
also mean that a naive extrapolation beyond z =5, espe-
cially for the ratio M (0" *)/M (2* ™), which was found
to be larger than 1 for small z,'7 is very likely not possi-
ble. Surely it is no surprise that M (0**) > M (2*+)
for a small volume, first of all for z <1 it has been
rigorously established'>!? that M (0*+)/M 2**)=1.2,
second our intuition that higher-angular-momentum
states should be heavier is not valid when rotational in-
variance is badly broken, as is the case in a small cubic
volume. The tunneling for z around 1 is not expected to
alter the ratio dramatically,® and indeed for SU(2) the
Monte Carlo data'” connect very well with the analytic
result.!? But it is not at all unlikely that around z =5
the ratio M(0**)/M(2**) (already close to 1 at
z==4.5) has a crossover, or continues more slowly, to-
wards smaller values, making the 0** glueball the light-
est as expected on the basis of angular momentum?? and
consistent with strong-coupling expansion.?* Arguments
for a crossover of the M (0**)/M (2**) ratio around
z =5 were also given by Michael.?

For the SU(3) data,!”™!® the same comments hold.
However, it is worth pointing out that the recent pertur-
bative computation for M (0**)/M (2**) by Weisz and
Ziemann'? yields a value of approximately 1.2, which de-
viates considerably from the value of 1.6%£0.2 at
z=1.21+0.2."7 Of course, it is not ruled out that this
discrepancy is due to the tunneling phenomena.

In conclusion, recent Monte Carlo calculations in a fi-
nite volume start to make contact with analytic calcula-
tions. Work is in progress to establish analytic results in
a domain up to, say z =2, with methods essentially ap-
plicable to both SU(2) and SU(3).!* This should allow
us to determine the crossover value of z more accurately.
Although this exciting recent progress is still far re-
moved from complete control in the infinite volume, it is
likely to give this desired control in a small volume, with
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interesting information on the approach towards the in-
finite volume.
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