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We present results for the low-lying energies of pure SU(2) gauge theory in a cubic volume up to a
size of five glueball masses, based on an analytic-variational continuum calculation. We observe as
lowest mass a T2(27%) state, roughly half the mass of the almost degenerate 4,(0%) and E(27) states.
The A4,(0 ~) state shows a pronounced volume dependence. There is fair agreement with existing finite-

volume Monte Carlo results.

PACS numbers: 11.15.Ha, 11.15.Tk

This Letter will give the results of our calculations for
the low-lying energy spectrum of pure SU(2) gauge
theory in a finite cubic volume. It goes beyond the ear-
lier perturbative! and semiclassical calculations? and
overlaps fully with existing Monte Carlo data based on
(adjoint) Polyakov loop correlations.> Our main motiva-
tion was and still is to understand confinement, expecting
this to have a purely gluonic origin. The challenge is to
use only the Yang-Mills Lagrangean as input, without
any free parameters except for the mass scale. We be-
lieve that our present calculations bring us close to the
point where confinement (string formation) sets in, and
provide the proper tools for the calculation of glueball
masses and string tensions and for the unlocking of the
“secrets’ of confinement.

Nevertheless, of more immediate use will be the com-
parison of our results with Monte Carlo calculations,
which is why we present these results in this form and
defer technical details to a future publication. Realizing
our responsibility in establishing a reference frame, we
have taken great care to demonstrate stability of our re-
sults. We base these results on a Rayleigh-Ritz calcula-
tion, where we provide both upper and lower bounds on
the energy. We also include a two-loop correction. To
facilitate the comparison of our results and the lattice
Monte Carlo data in a finite volume, we convert to di-
mensionless ratios (except in Fig. 2, curves ¢). As dis-
cussed elsewhere,* this removes the ambiguity due to our
lack of precise information on the nonperturbative S
function.® We consider the parameters zg and 6&') be-
ing respectively the linear dimension L of the cubic
volume and the energy of 't Hooft-type electric flux® in
units of some mass associated to an irreducible represen-
tation R of the cubic group. This group has the repre-
sentations’ R =1{4,,4,,E,T\,T2} with dimensions

LHeg=—3/g%*+a) 7'9%8c% 2+ V() + Vi) +Vy(e)+ - - .

dr =11,1,2,3,3} occurring with both parities. The lowest
angular momentum these representations couple to are
{0,3,2, 1,2}, respectively. The electric flux is classified
by the vector € € Z3 and using the cubic symmetry we
get three different energies, determined by the number of
components of e equal to 1 (mod2) (we call this the
number of “units” of electric flux, i.e., €@ is the energy
of i units of electric flux). Lattice Monte Carlo data for
the volumes where we expect our result to be accurate is
available in the form of zy+, (6{'%/z;+)"? and z,+/
In the Monte Carlo calculations energy dif-
ferences are measured by use of time-time correlations
for spatial Polyakov loops on elongated lattices (adjoint
loops for “glueballs” and fundamental loops for “string
tensions,” the quotation marks are explained in Ref. 4).

We first briefly outline our approach, which is based
almost entirely on Liischer’s effective Hamiltonian for
the spatially constant gauge fields,! with, however, the
crucial addition of proper boundary conditions. These
boundary conditions reflect the nontrivial topology of
configuration space (ignoring this leads to a Gribov am-
biguity®), and is also related to the fact that a zero-
momentum configuration represented by a spatially con-
stant gauge potential is not a gauge-invariant notion.
The boundary conditions are the remnant, in an adiabat-
ic approximation, of the patching of coordinate systems
in configuration space. This adiabatic approximation
can be explicitly tested in our calculational scheme and
will be discussed in more detail elsewhere. The coordi-
nates of Liischer’s effective Hamiltonian are the spatially
constant vector potentials ¢? with a the SU(2) color in-
dices and i the space indices. The symmetries are given
by ¢%— &%cbin;, with £€SO(3) and n€0(3,2).
The effective Hamiltonian is given in terms of the
minimally subtracted renormalized coupling constant g
at the scale L by

ZE+.3

(n

Here V1 is the transverse potential vanishing along Abelian configurations, called the vacuum valley,® while V; and V,
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are the one- and two-loop contributions to the effective potential along the vacuum valley,
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where a; =2.1810429%10 72, a;=7.5714590x10 3, a3
=—1.1130266x10 "% a;=—2.1475176x10"% a;s
=—1.2775652x10 "3, and F4; =eabdcb1cdj. We have
extended Liischer’s effective Hamiltonian to higher or-
ders relevant for our nonperturbative analysis. The need
for the one-loop term in Eq. (2a) was discussed previous-
ly.2 The terms proportional to as, a4, and as in Eq. (2¢)
were obtained from a one-loop calculation and the two-
loop term of Eq. (2b) follows from a straightforward ex-
tension of previous two-loop calculations for chro-
momagnetic vacuum energies. ' We made a polynomial
fit to eighth order in r; for V(c) and V;,(c), accurate to
one-third of 1% for r; smaller than n. Terms of sixth or-

ZF“;jF”fj+a3 Z Faianiijkak+a4 Z F“,-J-F“,-jcbjcbj+a5[det(c)]2+ oty
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Here W are the Clebsch-Gordan-Wigner coefficients for
combining three SU(2) irreducible representations into a
(color) singlet, thereby resolving the problem of elim-
inating the gauge degrees of freedom; each element of
our basis is gauge invariant. The XI,-nf("i) are one-
particle radial eigenfunctions and satisfy the boundary
conditions (d/dri)l—e‘ri)(1i,,, (ri) |, =-=0. For simplicity
we chose X, (r;) =j, (wie)r;). These spherical Bessel
functions allow us to calculate the Hamiltonian [Eq. (1)]
with respect to the basis in Eq. (4) algebraically in the
“momenta’ w,,(f’). The latter are easily calculated to a
high precision. Since we expect the wave function to be-
come less peaked for large g, this should be a good basis
for that region. Furthermore, we restricted the basis by
suitable projections to the various representations of the
cubic group (or whatever symmetry is left in the pres-
ence of nonzero electric flux), and most states considered
are ground states in these particular sectors. Typically
we took 350-450 basis vectors, chosen such that they
contain the most relevant coefficients of the wave func-
tion, and diagonalized the Hamiltonian using the IMSL
(International Mathematical Subroutine Library) rou-
tines. This provides an upper bound on the energies. To
make absolutely sure our results were accurate we also
calculated a lower bound, using Temple’s inequality.'!
(It2 requires one to calculate in addition the matrix of
H?)

Figure 1 gives for g = 0.8 our results for the low-lying
energy values (in units of 1/L, L being the physical size
of the cubic volume). States are labeled by their repre-
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der are the appropriate Taylor coefficients, whereas the
eighth-order term is considered as a correction. Finally
the boundary conditions are given by

9
ar,-

We use spherical coordinates (r;,6;,¢;) for the vectors
(c'i,c%,c?), and the problem becomes that of three in-
teracting particles enclosed in a sphere. Gauge invari-
ance requires the total “angular momentum” to be zero.

Next we analyze this Hamiltonian using the Ray-
leigh-Ritz technique and in general we take a basis of
the form

I—e¢
] ri‘l’e(C)lri=n=0~ (3)

4)

sentation [e;* denotes the (ground) state with i units of
electric flux]. Energies were calculated for steps of 0.2
in g. The full lines result from the Hamiltonian [Eq.
(1)1, excluding the two-loop contribution, the terms of
order 6 in the transverse part of the potential (V7) and
the terms of order 8 in the one-loop contribution (V).
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FIG. 1. The energies in units of 1/L, labeled by their repre-
sentation, for a few low-lying levels as a function of the renor-
malized coupling constant. The dotted parts of the curves use
only the upper bound. Elsewhere upper and lower bound coin-
cide within the thickness of the curves. Below g =0.8 we show
the perturbative result (Ref. 1). The dashed curves give the
results including the higher-order corrections.
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The upper and lower bounds coincide within the thick-
ness of these lines. Where the lower bound becomes less
accurate, but we still expect the upper bound to be
reasonable, we dotted the curve, using the value of the
upper bound. The full lines for g =< 0.8 gives the pertur-
bative result of Liischer and Miinster.! Tunneling for
the A excited and the E* ground states is expected to
set in around g=0.5, which explains the reasonably
large deviation for these states, but otherwise the agree-
ment is impressive. The dashed curves give the result for
the full effective Hamiltonian [Eq. (1)]. The eighth-
order one-loop term, the sixth-order transverse part and
the two-loop term contribute approximately with the ra-
tios 0.1:2:3.

We observe the remarkable fact that the ground-state
energy decreases beyond g—1.3, corresponding to
zg+~1.5. This might indicate an instability of the vacu-
um under formation of magnetically neutral domains,
which was speculated on in Ref. 10. We believe this to
be a significant step towards understanding the long-
range behavior of the Yang-Mills vacuum and certainly
deserves more attention than we can give it here.

In Fig. 2, curves a and b, we compare our results for
the string tension (6{%/z;+)"? and the mass ratio
z4+/zg+ as functions of z;+ with existing Monte Carlo
results.’ Figure 2 is obtained as follows from Fig. I:
g+ =LEQ—EQXR), 2. =LER-ED), 2z,
=L(EN-EQ), and 6 =2z,+/z;+. We see that the
results agree reasonably well. (For the string tension,
compare also Fig. 2 of the first paper in Ref. 2, but note
the E/ A, mixing.>'?) The mass ratio in our calcula-
tions is to good accuracy identically 1.1, whereas the
Monte Carlo data are somewhat higher for z;+ between
1.5 and 3.5. The systematic errors in our method are the
higher-order corrections in g and the nonadiabatic

-1

FIG. 2. Our results compared to lattice Monte Carlo results
(Refs. 3 and 12) for (curves a) In(z +/zg+), (curves b)

ln(ﬁé'l/zE+)l/2, and (curves c¢) In[M(E(Q2%))/(250Ams)].
The conventions for the curves are as in Fig. 1.

corrections, whereas in the Monte Carlo method the time
scales used might not be large enough compared with the
relevant energy differences.*!? Furthermore, the lattice
approximation (the finite a correction) will also lead to
systematic errors (nonuniversality). Initial expectations?
were that our result would only be reliable up to about
zgp+=2, but surprisingly z and & are stable within
(2-4)% under the higher-order corrections discussed
previously, all the way to z;+ =5.

From Fig. 1 one deduces that zg+ and z,+ are almost
constant functions of g around g =1, which is largely due
to the substantial lowering of the excited energies due to
the tunneling phenomenon. It is therefore not permissi-
ble to convert an expansion in g to an expansion in z, as
was done both in Refs. 1 and 2. But it does explain the
sharp onset of tunneling in Fig. 2, curves b, at zgz+~0.9
and the reasonable accuracy of our semiclassical predic-
tion? for this onset (z,4+ ~1.0).

In Fig. 2, curves ¢, we convert our values for zg+(g) to
the physical mass by

MEQT))
=z, +(g)(11g%/247%) 3 2 exp(127%/11g%) Aps,

where MS denotes the minimal-subtraction scheme (the
three-loop result of Tarasov, Vladimirov, and Yu'3 sug-
gests an error of 6% or less), giving a plateau®'* at
M(EQ1))~16Ams~ 119A,, which is below the Monte
Carlo result.!? This is probably due to higher-order
corrections in the B function.?

Finally Fig. 3 gives some new predictions. First, a
T5(2%) mass surprisingly lower than the E(2%) and the
A,(0%) mass. Second, a pronounced z dependence of
the 4,(0 7) mass. Still, we do not consider it prudent to
predict the lowest glueball state to have J* =271 at large
z. Only when we understand how rotational invariance
is restored at large z will we be able to tell which E ™
doublet combines with this 73 triplet state into a
JF=2% quintet,! and what its final mass will be. More
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FIG. 3. Results for the following mass ratios: (curves a)
z,-l+/25+, (curves b) zA‘+/zE+, (curves ¢) zA‘—/zE+, and ratios
of electric-flux energies: (curves d) 6®/6Y), (curves e)
EP/6D. The conventions for the curves are as in Fig. 1.
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accurately measurable with lattice Monte Carlo tech-
niques, we believe, is our prediction for the energy ratios
of different amounts of electric flux. For two (three)
units of electric flux we propose the use of two (three)
spatial Polyakov loops, in different directions. The
time-time correlation of such an operator should then al-
low one to estimate the energy of two (three) units of
electric flux. These ratios can be an important tool for
testing the string picture, because such a picture pre-
dicts® 6(‘)/G(l)=zei+/zer =./i, which deviates consider-
ably from the values which we find below zz+=5. For
the lattice we suggest plotting this ratio as a function of
\/z_;, because z,, can be measured more accurately than
zg. Since there are various indications>* that string for-
mation sets in for z;+>=5, it would be important to see
if and how quickly these ratios of electric-flux energies
settle to their expected asymptotic values.

In conclusion, we feel confident that we have demon-
strated the nature of the nonperturbative dynamics of
SU(2) gauge theory in a finite but reasonably large
volume. Of course, the physically interesting domain is
still beyond the distances that we have probed, but we
are getting close.
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