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ABSTRACT

In this note we show the relation between solutions to the equation [£2,, 22,] = exp (2min,, /NI
and the representations of the Heisenberg group, where #=1,2,...,2g and £, 5U(N). We con-
struct all its irreducible representations and whence all solutions to the above equation for arbitrary
g. We give a criterium for existence and uniqueness of solutions.

1. THE SETTING OF TWIST EATING SOLUTIONS

Twisted gauge fields on the hypertorus, both in the continuum and on the
lattice posed an interesting mathematical problem, namely finding SU(N)
matrices €2, (called twist eating solutions), such that: )

2,02,]=02,0,07'0"
)
=exp (2nin,, /N)-1

# is called the twist tensor, it is skew symmetric with integer entries mod N, The
index g runs from 1 to 2g (the dimension of space-time; odd dimensions need
not be considered separately). For details and further references see [1, 2] where
the full solution of this problem for g=<2 was found.

By means of a $/(2g, Z) transformation X, we can always transform # to its
standard form:
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) n®=1 —e e

where' e|e,|...|e, and n =X'nx. If (U, U)=exp (ERfHLU\,/N)I, then equation
(1) is solved by
3) Q,= [ U

H
v

From now on we assume # to be in the form (2).

This form is not unique since we can add a multiple of N to n,,. However
since eq. (3) can be inverted [2], the specific choice of #? is irrelevant.

Previously we established that solutions exist iff2 Pf(n/N)N is an integer,
for g=1,2 (where Pfis the Pfaffian which is a squareroot of the determinant
of an even dimensional skew symmetric matrix; Pf(n®)= - [If:, (—¢)). In
this note we will show that for arbitrary g, Pf(n/N)N €7 is a necessary but nof
a sufficient condition for existence of solutions to eq. (1}, consistent with the
remark in [1] that Pf{(n)=0 mod N is not a sufficient condition.

It was also shown for g=<2 that the solution to equation (1) is unique up to
a similarity transformation and multiplication with an element of the centre o
SUN)Y iff%; ‘

(4) g.c.d.(nm, Pf(%)N, N) 1.

For g>2 this is a sufficient, but nor a necessary condition. We will show that
uniqueness up to a similarity transformation means that the matrices U generate
an irreducible representation of the Heisenberg group, in which case there are
N¥e=1D SU(N)-inequivalent solutions.

It is clear that the group G generated by U has the property that its commu-
tator is in the centre of the group G (G is therefore nilpotent). This is typical
of the so-called Heisenberg group. (Indeed also in physics the Heisenberg
commutation relation between coordinates and their canonical momenta satisfy
the same property).

In the next section we will describe the relevant Heisenberg group and its
Schrodinger representation. In section 3 all representations of the Heisenberg
group are classified. In section 4 these results are used to construct all solutions
to (1) and give the approporiate criteria for existence and uniqueness, based
on n.

! For integer p and g the symbol p|g means that p divides g.
2 iff =if and only if, p.c.d. =greatest common divisor.
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2. THE HEISENBERG GROUP AND ITS CANONICAL REPRESENTATION

In general one can describe the Heisenberg group by the following properties.
Let K be an (additive abelian) group, C*=C— {0} the multiplicative group of
complex numbers and K* the dual of X, i.e. K'* is the (additive) group of
homomorphisms f: K—C* We will denote its elements by x*, The Heisenberg
group is given by H=C*x K x K *, with a product defined by:

HxH-H:({t, x2x*) (5, 3, ¥ %)

)
={sy*Hx) x+y, X+ ¥ *).

For completeness let us mention the following properties

x*¥a+ b) =x*a)- x*(b)

©) (r*+y*Ha) . =x*a) y*a)
((s X, y*)_l =([_ ly*(x)) — X _y*)

[(6 x5, ¥ *), (s, 0,0 %)) = (%) - y*(0) 7, 0,0).

In principle we can restrict ourselves to the subgroup
{teCHIAxekK, y*eK*:1=y*x)} of C*

When K is finite this makes # a finite group, which is convenient for finding
all its representations. In fact when K is finite we must have that y *(x) is a root
of unity for all x and y*. ‘
We will now introduce the Heisenberg group H(d), of type §, where:
5=(d1,d2,...,dg)

M
diE N,d]ldz... |dg'

The length or norm of & is given by:

6] =d,.

To & we associate the group K(J):
(8) K(§)=Zdl)(zdz>< ...ng

where Z, stands for Z/nZ, being the additive group of integers modulo 2. To
distinguish this from the unimodular group of the n-th roots of unity the latter
will be denoted by g, which is a multiplicative group:

U, = {1, E,er.i/n, e4ni/n’ e eZm'(n - l)/.'r}

%)
={teCH"=1}.
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The centre of SU(N) is also denoted by uy. We define H{d) by:
H(3) = pt5) X K(3) X K(d)*.

Let ¢:Z8—K{(d) be the canonical projection.
Define an isomorphism K{(&)-—>K(d)* x— *(x) by:
8 2THXJ}"_‘,
(10) *(g()Na(») = _Hlf-’Xp (—)
i

d

(so (6, g0, * (@0, (5, gtae), = (@] = (exp (?.m' L w) 0, 0))

k

We will next construct the canonical representation of H{d), called the
Schrodinger -representation, which is denoted by g;. The representation space
will be the C-vector space of functions : K(§)—C. Define an action of H(d)
on this vector space qf dimension N=[[}_, d; by:

(11} Host, % y NN} =1y * (@) f e+ 2).
Let us construct explicitely the N-dimensional unitary matrix representation of

as. A C-basis of Func (K(d}—C) is given by

fLX)=1 x=a  xacK(Jd)
(12)
=0 x#a

or equivalently

Jam(@e) =1  x;=a; mod d;
(13) ? s ! all j).
=0 x;#4¢; mod d;

In an obvious notation: f,{x)=4, ,.
It is easy to check that the matrix g;(¢, x, y*),, is defined by:

(14) (a5t x, yN(fp) = %m 58, %, ¥ ¥ apfa
l.e.

las((s, x, y*) (s, i, U NI Sfp) =

E [GJ(L Xy *)](;a[aé(sa U *)]a, bfc"
a,ce Kid)

(15)

To write down the matrices we use:

(16)  (4g(0), (@) = (4,0,0)- _ﬁl (1,0, 5y 11 (1,u;,0)
i= =1

with

(17 (uj)k=5j,k-
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If we introduce:
(18) Ug_j+|=0j=a'5(l,0,uj*), U?_g_j+]=(:rg+j=05(l,uj,0)
we have (from now on we ignore the difference between x and g(x)}:

L [
19 ostx =t 1 0 IR

Explicitly we have:

2?'”-0‘5—
(U ts1dan =exp(d— Sab
k

(20)
(UZg—k+])a,b=6a+uk,b'
Or as tensor products we can write:

Ug—k-a-] = ldl®”'®QdA®“' ®ld&
UZg-k+l =1d,® ---®Pdk®---®ldx

(21)

where 1, is the n-dimensional identity and Q,,, P, are the twist matrices satis-
fying

(22) [Pm Qn] . eZn’f/n ; l"

with
Q,=diag (1,e?™", .. g*i-1/n)
1
0L o
(3) P,= o
1...0

It is an easy exercise to show that this representation is irreducible. Furthermore
we have that U, satisfy eq. (2) with:

S
g-J+

8
,N= [ di.
K=1

Note that Pf(n/N)=-N"1; the'rewith we verified for this particular represen-
tation: Pf(n/N)N is integer and g.c.d. (#,,, N, PAin/NIN)=1.

Hw

3. ALL REPRESENTATIONS OF THE HEISENBERG GROUP H(J)

In order to find all representations, we can invoke the well known result [3]
due to Frobenius for a finite group H:

(25) ¥ (dim @)*=0(H)
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where the summation runs over the-irreducible representations p and 0(H) is
the order (number of elements) of A, We have:

(6 oHioN =18 Il d)*

Denote by C{J) the centre of H(J)
(27} C)={(t.0,0)|t e p5)}

and let ¢ be some irreducible representation of H{(d)} on a vector space V
(dim g: =dim ¥). Then by Schur’s lemma:

(28) e(Ay=4y(cM, Vcell(d)

with [ the identity on V and A,(c)eC.

Obviously 4,:C({8)—C is a homomorphism which we will call the central
character (of @). Note that if two irreducible representations ¢ and o’ satisfy
Ay # Ay, they can not be equivalent. Since C(8) is cyclic of order |§| we must
have:

(29) A (s0,00p=1", O0=m=<|d|-1.

The following, so-called twisted Schrédinger representation has this central
character:

(30} {los(m)(, x, y 9NN = [ty *(2)]"flx + z).
Following the same steps as in the previous section we find the matrix represen-

tation of az{(m) by:

Uy gi1 =05m¥1L,0,u0N=1,8...004 ..,

Uzg_k,',]=0'§(ﬂ?)(l,uk,0) = ]d1®"'®P£’f,¢®"'®IIIE'

(3D

An invariant subspace W is found by considering each tensor component sepa-
rately. For the &-th component we have (z=(1,1,1... HeC™)

(32 Wi=¢z0420;'7....05" V).

Using the explicit diagonal form of Qy in eq. (23) we find™:

(33) dim Wk=dk/g.c.d. (m,dk).

On the other hand, when g.c.d. {m,d,)=1 the eigenvalues of Q; are a per-
mutation of those of Q, , which implies that there is no non-trivial invariant

subspace,
Let us introduce the notation:

T=(P1 Prre-r Po)s  Pr=8.C.4. (M, dy)
(34)

)’:(C], Cz,-..,cg), Ck=d.‘(/pk'
3 For m=0 we define g.c.d. (#, dy)=dj.
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From eq. (7) we have that p, =1 implies that all other p, equal 1. We conclude:
o5(m) is irreducible iff m and |§] are relatively prime.

Assume now that ¢ is an irreducible representation of H{(d} with central
character 4,(1)=+" and with g.c.d. (m,|8|=d,)# 1. Define n,y as above and

(35) C(6, my= (1,5, yK(3), (yK(5)) %),
where we used the shorthand notation:
(36) yK(§)=ClZd,XC2ZdEX“'Xcgzdl_,‘

Note Ehat elements of ¢(C(J, m)) commute with o(H(5)), hence by Schur's
lemma g(C(d, m)) consists of scalar multiples of the identity. Therefore o
restricted to C(d, m) is given by (@, be K(x} and y-x: =(¢,x,, ey CpXy) € K()):
(BN oly-x Yy ="y 0
with
7Y 1 Y
08 ot 9 -exp (2mi g HETIL),
1 .

Clearly two irreducible representations with different m, @, & would be inequi-
valent.

Let us now consider the case where ¢ = b =0. Then g is trivial on the subgroup
Cyl(d, m) of H(J):

B39 Cold, m)= (5", yK(S), (PKISN ).

Therefore g factors over Cy(d, m):

H(§) —2——

i~

(40) [
H(8)/Cy(6,m)

@ is a faithfull representation of H(d)/Cy(d, m).

On the other hand H{J)/Cy(d, m) is isomorphic to H(y}, which is most easily
seen by defining a homomorphism cp]‘f : H(dy— H(y) whose kernel coincides
with Cy(d, m):

@n el x y T w0, w ()
with

X, =x; mod ¢,

(42) ) =i D

w90 = exp (Zm' § )
X py dg
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(Note that: i) w *(¥*)=7* in an obvious way, however one should be careful
with this notation when one identifies g(x) with x, ii) y : K(d)— K(y} is surjective
because p; !|n! and ¢, are relatively prime iii} w(y-x)=0 and w*(y - y*)=0.)

It is now obvious that an irreducible representation with central character ™
is given by: gf=a,,(m/|n|)0¢:f

o
H§———V

@y ¥ l {7

H(y)

Explicitly (with fe Func(K(y), C), Ze K(y)):
(44)  (olt, x yHIND) = (" @)Y F(w(x) + 2).

Finally for a,b+#0 we can extend Xop Uniquely to a l-dimensional represen-
tation of F{(J), with (necessarily) m=0:

Xpdy +ykb.‘()

(45) )Ea,b([s X, y):exp (21'“ E
3 dk

The product representation:
(46) Q:)Za,h'Q;?

is therefore an irreducible representation for each m, @ and b.
We have:

& -1
LT dim(f.,0p)
m=0 abeK(n)

(7

gl-1 2

= %, (1 P01 co*=1o] {1 d7.

m=0 k=i

Using (25) and (26) we sec that we have found all irreducible representations.
They are in essence all twisted Schrédinger representations.

4. BACK TO THE TWIST
Let us first write down the matrices U, for _o)‘f:

Up_irr =05(1,0,uf)=1,8...@0M@ .. @1,

(48) e O _ |7|4pe
Uzg_k+|—9y(l,uk,0)_l[.l®‘..®P[.k ®...®l‘c.:

which satisfy eq. (2) with:
m/py _ Nm

(49) g1 = —
gkt Cp df( k=1
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Furthermore we have:

(50) Pf(—%)/\& - i]l (ﬁ) cZ.

Clearly my=m/p, is relatively prime to ¢,. Since c;ley for i<tk,m, is also
relative prime to ¢;.

For g <2 this is easily seen to imply g.c.d. {rn,,, NPf(n/N),N)=1. However,
the following example, due to Coste, shows that it is not a necessary condition
for irreducibility. Take:

g=3, N=22.7?
(51)

€3=‘:492=4e] :23‘3‘72.

For this, one explicitly verifies that:

(52) ged (nw,N-Pf(%),N):Z:#I,
but that it nevertheless admits a solution which is based on the irreducible
representation az{m) with:
(53) 6=(7,28,28), m=6.
To show that N- Pf(n/N)e Z is not a sufficient condition* we give the next

example, also provided by Coste:

g=3,N=2%.3¢
(54)
gy = 2482 = 2431 = 2434.

This yields Pf{n/N)N=1, but it cannot allow for a twist eating solution. One
way to see this is to use the well known result, that

[
55y Utk)= 11 Uf»
u=1
are independent N X N matrices for 0 <k, <N, if a solution does exist. Where:
(56) N|'=Ng+f:cg—i+[-

This is an easy generalization of the well known result for g=1 and 2, see

e.g. [2].
Therefore we have at least ]|, Nﬂ:N,%, independent NV x N matrices. There
can be no more than N?, so that necessarily

(577 N, =<N.

* Integrality of Bf{n/N)N in general depends on the choice of »; i.e. it depends on its mod N
freedom.
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For the case of eq. (54) this bound is easily seen to be violated, hence
Pfin/N)NeZ is not sufficient for the existence of solutions to eq. {1).
Since for given ¢; and N, ¢; and m; are fixed, one can always find d; and s
such that eq. (7) is satisfied. The simplest choice for m is the smallest common
multiple of all »;, which equals m; (see below eq. (50)).
Therefore if N is a muliiple of N, we can write down the following
solution:

(58) U, =A,xU",

where: A, =diag (1}",..., ANy e U(1)YNe and U7 e U(N;,) coming from
G 5(m) (see eq. (48)).

We claim that up to a similarity transformation this is the only possible type
of solution. .Suppose that U, is a solution and define:

(59)  w,=Up,

with N, defined in (56) satisfying Zf‘;‘l’,ﬂ': !, This implies that the w, can be
simultaneously diagonalized, with U, block-diagonal:

(60) [w,w,]=lw,Ul=1.

Working in this diagonal gauge one easily verifies that:

(61) U,=1,'U,, Af=w,

satisfy the same equation as U,, but such that &,= Uf«=1. Consequently,
the U, give a representation of the Heisenberg group. With the help of the
previous two sections there is no other possibility for U, then to be the direct
sum of irreducible representation of dimension V. And hence N has to be a
multiple of N, and U, is of the form of eq. (58). The dimension of the solu-
tion manifold to equation (1) up to a similarity transformation is (N/N;, —1).
Given a solution we therefore find’:

: N
(62) Pf(%)f\e ~(I1 my)- et
and

miN

(63) egffH:Tl_: m; [l ¢,

N

Nirr k#i

whence:

(64)  (N/Nylg.c.d. (nm, Pf(%)N, N).

One easily verifies that for g=1 and 2, g.c.d. (n,, Pf(n/N)N,N)y=N/N,,
and the dimension of the solution manifeld confirms with previous results [1].

5 For g=1 and 2, g.c.d. {V, []iﬂ mygy=1, so that Pf{n/N)NeZ implies that N is a multiple
of N,',.r.
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We also see that g.c.d. {(m,,, Pf(n/N)N,N}=1 implies N=N,,, which implies
uniqueness of the solution. Since N, fixes the dimensionality of the solution
manifold, we indirectly see that in the case that N is a multiple of N, for a
specific choice of n, N, does not depend on this choice (because eq. (3) is
invertable [2].)

In conclusion, twist eating solutions exist iff N is a multiple of N, (for
which Pf{n/N}NeZ is only a necessary condition). A solution is unigque up to
a gauge and Zy-factors iff N=N,, iff it corresponds to an irreducible repre-
sentatiqn (for which g.c.d. (n,,, Pf(n/NIN,N)=1 is only a sufficient con-
dition), in that case (48) gives an explicit solution for eq. (2), which through a
simple rescaling by a phasefactor can be chosen in SU(N)

miln — 1}

(replacc 0, by O,=exp (— T)-Q,, and similar for Pn).

Multiplication with a phasefactor is indeed the only freedom we have, which
for SU(N) reduces to multiplication with elements of the centre of SU(N}
(isomorphic to uy}. Using the fact that

g.cd. (mlr| L ey=gcd. (njpc Le=1

we have that - Q2" and i- PV are equivalent to Q2 and AP if
A€y, . Therefore all inequivalent solutions to equation (2) are given by (see
(48)) A U, and v, Uy, with A, vy eup /i, . Hence there are

i3
I O /)= N0
inequivalent solutions.

5. CONCLLUSIONS

In this note new results concern twist eating solutions for more than four
dimensions; one might think of applications for TEK-models in the d— oo limit,
where 4 is the dimension of space-time. However our main motivation was to
show the underlying structure of the Heisenberg group.
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