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The progress on calorons (finite temperature instantons) is sketched.
In particular there is some interest for confining temperatures, where the
holonomy (the asymptotic value of the Polyakov loop) is non-trivial. In the
last section I give more recent results by others.
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1. Introduction

There has been a revised interest in studying instantons at finite tem-
perature T , so-called calorons [1, 2], because new explicit solutions could be
obtained where the Polyakov loop at spatial infinity (the so-called holon-
omy) is non-trivial. They reveal more clearly the monopole constituent
nature of these calorons [3]. Non-trivial holonomy is therefore expected to
play a role in the confined phase (i.e. for T < Tc) where the trace of the
Polyakov loop fluctuates around small values. The properties of instantons
are therefore directly coupled to the order parameter for the deconfining
phase transition.

At finite temperature A0 plays in some sense the role of a Higgs field in
the adjoint representation, which explains why magnetic monopoles occur
as constituents of calorons. Since A0 is not necessarily static it is bet-
ter to consider the Polyakov loop as the analog of the Higgs field, P (t, ~x) =

Pexp
(

∫ β
0
A0(t+ s, ~x)ds

)

, which transforms under a periodic gauge transfor-

mation g(x) to g(x)P (x)g−1(x), like an adjoint Higgs field. Here β = 1/kT
is the period in the imaginary time direction, under which the gauge field
is assumed to be periodic. Finite action requires the Polyakov loop at
spatial infinity to be constant. For SU(n) gauge theory this gives P∞ =
lim|~x|→∞ P (0, ~x) = g† exp(2πidiag(µ1, µ2, . . . , µn))g, where g brings P∞ to
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its diagonal form, with n eigenvalues being ordered according to
∑n

i=1 µi = 0
and µ1 ≤ µ2 ≤ . . . ≤ µn ≤ µn+1 ≡ 1 + µ1. In the algebraic gauge, where
A0(x) is transformed to zero at spatial infinity, the gauge fields satisfy the
boundary condition Aµ(t+ β, ~x) = P∞Aµ(t, ~x)P−1

∞ .
Caloron solutions are such that the total magnetic charge vanishes. A

single caloron with topological charge one contains n− 1 monopoles with a
unit magnetic charge in the i-th U(1) subgroup, which are compensated by
the n-th monopole of so-called type (1, 1, . . . , 1), having a magnetic charge
in each of these subgroups [4]. At topological charge k there are kn con-
stituents, k monopoles of each of the n types. Monopoles of type j have a
mass 8π2νj/β, with νj ≡ µj+1 − µj . The sum rule

∑n
j=1νj = 1 guarantees

the correct action, 8π2k.
Prior to their explicit construction, calorons with non-trivial holonomy

were considered irrelevant [2]. because the one-loop correction gives rise
to an infinite action barrier. However, the infinity simply arises due to the
integration over the finite energy density induced by the perturbative fluctu-
ations in the background of a non-trivial Polyakov loop [5]. The calculation
of the non-perturbative contribution was performed in [6]. When added to
this perturbative contribution, with minima at center elements, these min-
ima turn unstable for decreasing temperature right around the expected
value of Tc. This lends some support to monopole constituents being the
relevant degrees of freedom which drive the transition from a phase in which
the center symmetry is broken at high temperatures to one in which the cen-
ter symmetry is restored at low temperatures. Lattice studies, both using
cooling [7] and chiral fermion zero-modes [8] as filters, have also conclusively
confirmed that monopole constituents do dynamically occur in the confined
phase.

2. Some Properties of Caloron Solutions

Using the classical scale invariance we can always arrange β = 1, as will
be assumed throughout. A remarkably simple formula for the SU(n) action
density exists [4],

TrF 2
αβ(x) = ∂2

α∂
2
β logψ(x), ψ(x) = 1

2
tr(An · · · A1) − cos(2πt),

Am ≡
1

rm

(

rm |~ρm+1|
0 rm+1

) (

cosh(2πνmrm) sinh(2πνmrm)
sinh(2πνmrm) cosh(2πνmrm)

)

,

with rm ≡ |~x−~ym| and ~ρm ≡ ~ym−~ym−1, where ~ym is the location of the mth

constituent monopole with a mass 8π2νm. Note that the index m should
be considered mod n, such that e.g. rn+1 = r1 and ~yn+1 = ~y1 (there is one
exception, µn+1 = 1+µ1). It is sufficient that only one constituent location
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is far separated from the others, to show that one can neglect the cos(2πt)
term in ψ(x), giving rise to a static action density in this limit [4].

In Fig. 1 we show how for SU(2) there are two lumps, except that the
second lump is absent for trivial holonomy. Fig. 2 demonstrates for SU(2)
and SU(3) that there are indeed n lumps (for SU(n)) which can be put
anywhere. These lumps are constituent monopoles, where one of them has
a winding in the temporal direction (which cannot be seen from the action
density).

Fig. 1. Shown are three charge one SU(2) caloron profiles at t = 0 with β = 1 and

ρ = 1. From left to right for µ2 = −µ1 = 0 (ν1 = 0, ν2 = 1), µ2 = −µ1 = 0.125

(ν1 = 1/4, ν2 = 3/4) and µ2 = −µ1 = 0.25 (ν1 = ν2 = 1/2) on equal logarithmic

scales, cutoff below an action density of 1/(2e).

Fig. 2. On the left are shown two charge one SU(2) caloron profiles at t = 0

with β = 1 and µ2 = −µ1 = 0.125, for ρ = 1.6 (bottom) and 0.8 (top) on equal

logarithmic scales, cutoff below an action density of 1/(2e2). On the right are shown

two charge one SU(3) caloron profiles at t = 0 and (ν1, ν2, ν3) = (1/4, 7/20, 2/5),

implemented by (µ1, µ2, µ3) = (−17/60,−1/30, 19/60). The bottom configuration

has the location of the lumps scaled by 8/3. They are cutoff at 1/(2e).

2.1. Fermion Zero-Modes

An essential property of calorons is that the chiral fermion zero-modes
are localized to constituents of a certain charge only. The latter depends
on the choice of boundary condition for the fermions in the imaginary time
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direction (allowing for an arbitrary U(1) phase exp(2πiz)) [9]. This pro-
vides an important signature for the dynamical lattice studies, using chiral
fermion zero-modes as a filter [8]. To be precise, the zero-modes are local-
ized to the monopoles of type m provided µm < z < µm+1. Denoting the

zero-modes by Ψ̂z(x), we can write Ψ̂†
z(x)Ψ̂z(x) = −(2π)−2∂2

µf̂x(z, z), where

f̂x(z, z′) is a Green’s function which for z ∈ [µm, µm+1] satisfies f̂z(z, z) =
π <vm(z)|Am−1 · · · A1An · · · Am|wm(z)>/(rmψ), where the spinors vm and
wm are defined by v1

m(z) = −w2
m(z) = sinh (2π(z − µm)rm), and v2

m(z) =
w1

m(z) = cosh (2π(z − µm)rm).
To obtain the finite temperature fermion zero-mode one puts z = 1

2
,

whereas for the fermion zero-mode with periodic boundary conditions one
takes z = 0. From this it is easily seen that in case of well separated con-
stituents the zero-mode is localized only at ~ym for which z ∈ [µm, µm+1]. To

be specific, in this limit f̂x(z, z) = π tanh(πrmνm)/rm for SU(2), and gener-

ally f̂x(z, z)=2π sinh[2π(z−µm)rm] sinh[2π(µm+1−z)rm]/(rm sinh[2πνmrm]).
We illustrate in Fig. 3 the localization of the fermion zero-modes for the case
of SU(3).

Fig. 3. For the lower right SU(3) configuration in Fig. 2 we have determined on the

left the zero-mode density for fermions with anti-periodic boundary conditions in

time and on the right for periodic boundary conditions. They are plotted at equal

logarithmic scales, cut off below 1/e5.

2.2. Calorons of Higher Charge

We have been able to use a “mix” of the ADHM and Nahm formal-
ism [10], both in making powerful approximations, like in the far field limit
(based on our ability to identify the exponentially rising and falling terms),
and for finding exact solutions through solving the homogeneous Green’s
function [11]. We found axially symmetric solutions for arbitrary k, as
well as for k = 2 two sets of non-trivial solutions for the matching condi-
tions that interpolate between overlapping and well-separated constituents.
For this task we could make use of an existing analytic result for charge-2
monopoles [12], adapting it to the case of carolons. An example is shown in
Fig. 4.
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3. More recent results

There are more recent lectures by Bruckmann [13] and Diakonov [14].
Also, Diakonov and Petrov made some progress on constructing the hy-
perKähler metric which approximates the metric for an arbitrary number
of calorons. They claim that this already gives confinement [14, 15]. But
some cautionary remarks can be made [16], and they applied Ewald’s sum-
mation method to extend finite volume calculations of the Polyakov loop
to infinite volumes, giving already confinement for a non-interacting ensem-
ble [17]. Also multi-calorons were revisited [18], and the authors claim to
have the full SU(2) moduli space for k = 2.

The calorons have also adjoint fermionic zero-modes, and they are now
known in analytical form [19]. Finally, Ünsal has published a paper con-
cerning the mechanism of confinement in QCD-like theories [20], for example
SU(2) with 1 ≤ nf ≤ 4 adjoint Majorana fermions. He argues that there are
BPS and KK monopoles (precisely the constituents of the caloron), which
have zero-modes under the adjoint fermions. They then make BPS-KK
bound states (instead of BPS-KK).

Fig. 4. In the middle is shown the action density in the plane of the constituents

at t = 0 for an SU(2) charge 2 caloron with trP∞ = 0, where all constituents

strongly overlap. On a scale enhanced by a factor 10π2 are shown the densities for

the two zero-modes, using either periodic (left) or anti-periodic (right) boundary

conditions in the time direction.
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