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1. Introduction

Persistence is related to the question of how long a fluctuating variable stays above
a certain level. This is a recurrent theme in statistical physics. It started as the
problem of level crossing in probability theory [1]–[3]. If the problem is posed in the
context of Gaussian random processes, persistence is completely determined by the
correlation function of the stochastic variable. For these processes the essence of the
problem is calculating, from the correlation function, the probability that the fluctuation
variable stays above a certain level during the time t. This turned out to be a classic
unsolved problem in probability theory [2, 4, 5]. Around the turn of the century the
investigations reached a peak, with applications in physics ranging from properties of the
diffusion equation [6]–[8], survival of spin states [9]–[11], [4, 12], fluctuating steps [13] and
interfaces [5, 14], to persistence in order parameters [18] and non-Gaussian processes [19].
A recent review on equilibrium step fluctuations, which poses the problem of persistence
in a wide context, is given by Constantin et al [15].

The investigations focused on the calculation of the asymptotic behavior. The
associated persistence exponent sometimes characterizes a new partition of physical
systems into universality classes. For a stationary Gaussian process the persistence
probability for a time t decays exponentially with t. For these processes the persistence
probability can be written as the ratio of two path integrals. The numerator involves the
sum over paths obeying the condition of persistence and the normalizing denominator
over paths without the condition. For a Markov process the correlation function is an
exponential and both path integrals can be evaluated. But as yet there is no general
scheme for an arbitrary correlation function for calculating the persistence exponent.
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Most theoretical investigations treat the process as a continuous process in time, which
it certainly is. However measurements of a stochastic variable are necessarily discrete in
time. One would think that, with a sufficiently high experimental sampling rate, the limit
of a continuous process would be seen experimentally, such that the sampling rate would
become irrelevant. This is not obvious though, in particular for ‘non-smooth’ processes [4].
A ‘smooth’ process has a correlation function deviating from its initial value in a quadratic
way. The influence of the discreteness of the sampling on the persistence exponent has
been investigated by Majumdar et al [16] for stationary Gaussian Markov processes and
by Ehrhardt et al [17] for a number of non-Markovian smooth processes. In general the
exponent derived from discrete sampling is lower than the continuous exponent, because
double crossings of the level in between two discrete sampling points are missed. These
authors consider the calculation of the persistence of a discrete sequence more difficult
than that of the underlying continuous process, as the approximation schemes derived
for continuous processes are not applicable to discrete series of data. For ‘non-smooth’
processes another difficulty arises in the calculation of the persistence probability, because
rapid fluctuations give a diverging probability on a short time scale, such that the mean
persistence time vanishes [5, 20].

Recently we encountered the persistence problem in an experimental study of a
fluctuating interface between phase-separated colloid–polymer mixtures [20]. This is
an example of a stationary Gaussian random process, since the fluctuations are small
in amplitude and their energy is given by a quadratic Hamiltonian in the stochastic
variables. On the time scale of the measurements the process is non-Markovian and
non-smooth. We have collected data on the correlation function and on the joint
probabilities for, e.g., finding n successive height values above the level h. Thus here
the practical persistence problem presents itself in a discretized form and the question
arises of whether one can calculate, from the values of the correlation function, directly,
the persistence probabilities of the same set of points in time. In an earlier publication [21]
we demonstrated how to do this for short series. In this paper we extend the calculation
to the whole set of experimental points. We focus here on the longer time sequences
which allow for more detail than the similar spatial sequences. We find the values of the
correlation function at equidistant time intervals and also the persistence probability for
the same series of time steps.

Thus experimental data were obtained in large numbers and with high accuracy for
an interesting system, which enabled us to further test the theories on the persistence
problem. As mentioned in [17], the continuum limit usually leads to a simplification of
the calculation, but we find in our case the discreteness of the experimental data rather a
blessing in disguise. Our aim is to show how the persistence probabilities for n events can
be directly calculated from the measured n + 2 points of the correlation function for the
range of measured points, which are neither on a short time scale nor in a fully asymptotic
regime. We derive two sum rules for the discrete series, which play a vital role in assessing
the accuracy of the computational scheme.

2. The experimental system

Traditionally experimental studies of interfaces are carried out by means of light and
x-ray scattering. The field obtained another dimension from experiments of Aarts et al
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[22, 23], in which they obtained microscopic images of fluctuating interfaces of phase-
separated colloid–polymer mixtures using confocal microscopy. Although scattering on
interfaces is most valuable, it always yields global information on the fluctuations, while
inspection by microscopy gives local information. However, the wavelengths and heights
involved in the capillary waves of molecular fluids are way beyond the reach of detection
by microscopic methods. For colloidal interfaces the characteristic length and time scales
of the fluctuations can become accessible via confocal microscopy, on lowering the surface
tension to the nN m−1 range.

Here, confocal microscopy measurements were performed on phase-separated
colloid–polymer mixtures. The colloids are 69 nm radius fluorescently labeled
polymethylmethacrylate particles, suspended in cis/trans decalin, with polystyrene
(estimated radius of gyration = 42 nm) added as a depletant polymer. Due to a
depletion induced attraction, these mixtures phase separate at sufficiently high colloid
and polymer volume fractions and an appropriate colloid to polymer aspect ratio into a
colloid-rich/polymer-poor phase (colloidal liquid) and a colloid-poor/polymer-rich phase
(colloidal gas) [24]. Here the polymer concentration acts as an inverse temperature and
upon dilution the binodal is approached.

In confocal microscopy a monochromatic laser beam is used to excite dye molecules
attached to (in this case) the colloid. Through a dichroic mirror the outgoing light is
separated from the incoming light. A two-dimensional confocal slice is then obtained
through a pinhole, from single-wavelength fluorescent light emitted from the sample. For
our experimental system, the confocal slices are only three colloidal diameters thick;
the density profile between the two phases is observed as a function of fluorescence
intensity.

A very precise location of the interface can be obtained by fitting the intensity with
a van der Waals profile: I(z, x) = a + b tanh([z − h(x)]/c), where z is the direction
perpendicular to the interface and x a coordinate along the interface. In the upper
phase the density approaches a value corresponding to a + b and in the lower phase,
one corresponding to a − b, while c measures the intrinsic width of the interface. Thus
at every snapshot a function h(x) follows and the sequence of snapshots gives the
function h(x, t). This is a practical separation of the particle motions, which lead at
short scales to the intrinsic interface and the particle motions (capillary waves) which
drive the long wavelengths. This opens up the possibility of following in detail the
motion of the height of the interface and of making a statistical analysis of its temporal
behavior. Of course the method has its inherent restrictions. Just as in ordinary
movie recording, snapshots have to be taken at finite time intervals. For colloidal
interfaces this interval can be made much smaller than the intrinsic time scale of the
motions.

With a Nikon E400 microscope equipped with a Nikon C1 confocal scanhead, several
series of 5000 snapshots of the interface were recorded, at constant intervals Δt of 0.45
s and 0.50 s, for two state points to be denoted as II and IV. The latter is closer to the
binodal. The pixels are separated by a distance Δx = 156 nm and a single scan takes
approximately 0.25 s to complete. With 640 heights per snapshot, we obtain in total
640 × 5000 data points, which enable us to measure persistence probabilities as low as
10−6.
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3. The correlation function

We write the normalized correlation function as

g(t/tc) = 〈h(0, t)h(0, 0)〉/〈h2〉, (1)

where 〈h2〉 is the equal time correlation function. tc is the characteristic time of the
process which we have inserted in the argument of g to make it dimensionless. It is given
by the expression

tc =
(η + η′)√

gγΔρ
, (2)

where the η s are the viscosities of the two coexisting phases, Δρ the density difference
and γ the surface tension. From the definition it follows that g(0) = 1. Heights are scaled
with 〈h2〉1/2 and times with tc, so we can work exclusively with dimensionless quantities.
Experimentally one has a discrete sampling of g(t/tc) with Δt as the smallest interval.
Thus one finds a sequence gn = g(nδ) with δ = Δt/tc.

Capillary wave theory for overdamped waves gives the following expression for the
correlation function [20, 25]:

g(t/tc) =
2

log(1 + κ2)

∫ κ

0

x dx
exp[−(x + x−1)(t/2tc)]

1 + x2
. (3)

The upper bound of the integral is κ = 2πξ/d with ξ = γ/(gΔρ) the correlation length
and d the diameter of the particles. The lower bound, determined by the size of the
system, has been set equal to 0. The upper bound is essential for the convergence of the
integral and the influence on the short time behavior of the correlation function. Cutting
off the capillary waves at the short-wavelength side is a poor man’s way to handle the
otherwise diverging interface width 〈h2〉. Figure 1 shows the function (3) together with
data points referring to two experiments, denoted by II and IV [20]. The choice of δ is
actually a fit of tc. So we have plotted in the figure the data points with t/tc = nδ and
δ = 0.04 for II and δ = 0.02 for IV.

Although the data points follow the curve reasonably well, the scatter of the data
points is manifest, and more important, though only visible in the inset, is the fact that
the first few points are well below the curve. In this paper it is of less importance how
well the experimental correlation function can be represented by a theoretical curve, since
we are interested in the problem of directly calculating the persistence probabilities from
the experimental correlation function.

4. Persistence probabilities and sum rules

To formulate the persistence probability for a discrete series, we form the n × n matrix
gi,j = g|i−j|, which is determined by the first n values of gn. Using that the process is
Gaussian, the probability on a sequence of values (h1, . . . , hn) is given by the formula

G(h1, . . . , hn) =
1

D1/2
exp

(
−1

2

∑
i,j

Ji,jhihj

)
, (4)
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Figure 1. Height–height correlation functions, curve (3) and experimental points;
circles refer to δ = 0.04 (II) and squares to δ = 0.02 (IV). Inset: first 10 measured
correlation points and curve (3).

with the normalization D = (2π)n det g, where det g is the determinant of g. Ji,j is the
inverse of gi,j, which is again an n × n matrix and its matrix elements also individually
depend on n (while those of g only depend on |i− j|). The justification of (4) is based on
the fact that the correlator 〈hihj〉 as calculated with (4) does indeed lead to g|i−j|.

The expression for the persistence probability pn(h), on a sequence of precisely n
events above h, follows as the ratio of two integrals

pn(h) = q−(n+)−(h)/q−+(h). (5)

The numerator is the (n + 2)-fold integral

q−(n+)−(h) =

∫
D

dhi G(h0, . . . , hn+1), (6)

where the integration domain D, indicated by the superscript on q, is given by the
conditions h > h0 > −∞, h < hi < ∞, and h > hn+1 > −∞. It selects the sequence
of events: starting with a value below h, followed by n points above h and terminated
by a value below h, which are the sequences of precisely n successive values of the height
hi > h. Similarly the denominator is given by the double integral

q−+(h) =

∫ h

−∞
dh0

∫ ∞

h

dh1 G(h0, h1) (7)

The inverse matrix Ji,j depends for n = 2 only on the first value g1 of the correlation
function. So the q−+(h) is generally given by

q−+(h) =

∫ h

−∞
dh0

∫ ∞

h

dh1
exp[−(h2

0 + h2
1 − g1h0h1)/(1 − g2

1)]

[2π(1 − g2
1)]

1/2
(8)
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The denominator serves as the normalization, since one has the relation

q−+(h) =
∑
n=1

q−(n+)−(h) (9)

which gives the sum rule for the total probability∑
n=1

pn(h) = 1. (10)

The derivation of (9) is based on repeated expansion of the relation

q−+(h) = q−+−(h) + q−++(h) = q−+−(h) + q−++−(h) + q−+++(h) = · · · , (11)

which simply states that the probability of finding a sequence −+ is the same as that of
finding it from the events − + + and − + −. Together they extend the integration over
the last height variable over all values and the probability for −+ results. Repeatedly
adding a new point in the sequence ending with + leads to the identity (9).

There exists one other sum rule. Consider q+(h), which is the single integral over h0

with h0 > h. The expansion, like (11), starts as

q+(h) = q+−(h) + q++(h) = q−+−(h) + q++− + q−++(h) + q+++(h). (12)

Systematically replacing every + at the beginning or end of the string by the sum of
strings extended with a + and − gives

q+(h) =
∑
n=1

nq−(n+)−(h). (13)

This yields for the mean value the sum rule∑
n=1

n pn(h) = q+(h)/q−+(h). (14)

We have not found further sum rules.
The sum rules (10) and (14), which generally apply for stationary Gaussian processes,

involve integrals which are easy to execute. q+(h) is an error function and q−+(h) can be
reduced from the double integral (8) to a single integral, for which an analytic expression
exists for h = 0 [21]

q−+(0) =
1

2
− 1

π
arctan

(
1 + g1

1 − g1

)1/2

. (15)

The sum rules are typical for the discrete series as the continuum limit for non-smooth
processes is singular. If one could straightforwardly define in the continuum limit a
probability density p(t) on a persistence interval t, one would expect it to be related
to the discrete pn as

p(nΔt)Δt � pn, (16)

where we suppressed the h dependence for the moment. The probability density is then
normalized: ∫ ∞

0

dt p(t) �
∑
n=1

pn = 1. (17)
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Consequently one would expect the mean of the discrete series to diverge as
∑
n=1

n pn = (Δt)−1
∑
n=1

(nΔt) pn � (Δt)−1

∫ ∞

0

dt t p(t) ∼ (Δt)−1. (18)

However the expression (15) shows, with g1 � 1 −O(Δt), that

q−+ ∼ (Δt)1/2, (19)

while q+ is independent of Δt. So the discrete mean diverges as (Δt)−1/2 in contrast to
the expected behavior (18). The discrepancy is due to the Brownian fluctuations on all
length scales for a non-smooth correlation function [5, 20]. This gives a non-integrable
probability density for short times, making the normalization (17) questionable.

We calculate the pn(h) and then check whether the total and mean correspond to the
exactly calculable ratios. In particular (14) is a stringent test for the calculated values of
pn(h), since it more sensitive to the large n values than (10).

The restricted integration domain prevents the integral (6) from being straightfor-
wardly evaluated. Although it involves a finite set of integrations, which can indeed be
performed by standard techniques for small n, a direct evaluation of (6) is impossible for
large n. As we shall show, expression (6) has a definite asymptotic large n behavior, but
the experimental data are not exclusively determined by this asymptotic behavior at all.
In fact, the practical regime for which accurate data can be collected shows important
transient behavior.

5. The Markovian case

Our calculational scheme is inspired by the perturbation technique of Majumdar and
Sire [4], which takes the Markovian case as the lowest approximation. The Markovian
case has an exponential decaying correlator

g(t/tc) = exp(−λt/tc), (20)

such that gn = gn with g = exp(−λδ). The inverse matrix J is then a band matrix with
all elements 0 except on the diagonal:

J00 = Jn+1,n+1 = 1/(1 − g2), Jii = (1 + g2)J00, Ji,i±1 = −gJ00. (21)

Note that this also holds for a matrix of finite dimension n. If the matrix J is restricted to
the diagonal and the subdiagonals, the corresponding joint probability can be factorized
in several ways. We present here the symmetric representation for the above Markovian
case

M(h0, . . . , hn+1) = f0(h0)

(
n+1∏
i=1

K(hi−1, hi)

)
f0(hn+1). (22)

The initial (and final) function is given by

f0(x) = exp[−u0x
2]/[2π]1/2, (23)

with u0 = 1/4. The kernel reads

K(x, y) =
exp[−u(x2 + y2) + vxy]

[2π(1 − g2)]1/2
, (24)
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with the values

u =
(1 + g2)

4(1 − g2)
, and v =

g

(1 − g2)
. (25)

Physically, the factorization results from the fact that in a Markovian process the
probability of an event only depends on the probability of the previous event.
Mathematically, any matrix which is restricted to the diagonal and the subdiagonals can be
seen as a Markovian matrix. We use the more convenient symmetric form, allowed by time
reversal symmetry, rather than the standard conditional probability, with an asymmetric
kernel. We will lean heavily on choosing the optimal Markovian approximation, which
uses optimal values for the u and v and not those tied in with g.

Any of these representations will give the values of pn(h) recursively. Define a set of
functions fn(x) with f0(x) given by (23). f1 is constructed from f0 as

f1(y) =

∫ h

−∞
dx f0(x)K(x, y). (26)

The general term is defined by recursion for 1 < i ≤ n + 1:

fi(y) =

∫ ∞

h

dx fi−1(x)K(x, y). (27)

Then pn(h) can be expressed as

pn(h) =

∫ h

−∞
dx fn+1(x)f0(x)/q−+(h). (28)

In the Markovian case the multiple integral (6) becomes a repeated integral transformation
with K as the kernel. Asymptotically the result is dominated by the largest eigenvalue of
the kernel, which then leads to a persistence exponent.

6. Calculational scheme

Our approximation scheme is based on a separation of J in a Markovian part M and a
remainder H :

J = M + H. (29)

M is a Markovian approximant, i.e. a matrix which is confined to the diagonal and the
subdiagonals. Thus one can relate a kernel K to M as in (22), but with as yet unspecified
values of u0, u and v. Also a Markovian joint probability M can be associated with this
part (as in (22)), which enables us to define a Markovian approximation p0

n(h):

p0
n(h) =

1

q−+(h)

∫
D

dhi M(h0, . . . , hn+1), (30)

with D the same integration domain as in (6). The full probability pn(h) then reads

pn(h) = p0
n(h)〈exp(−H)〉0. (31)
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where the average 〈A〉0 is defined as

〈A〉0 =

∫
D dhi M(h0, . . . , hn+1)A(h0, . . . , hn+1)∫

D dhi M(h0, . . . , hn+1)
. (32)

The exponential in (31) will be evaluated using the cumulant expansion. The Markovian
average of the first cumulant of H and the higher cumulants are calculated in a similar
iterative way to p0

n(h).
There is a large amount of freedom in choosing the Markovian part. Any matrix

with only a non-zero diagonal and non-zero subdiagonals would do. This freedom can be
exploited through the inequality

〈exp(−H)〉 ≥ exp(−〈H〉). (33)

The optimal Markovian matrix gives the largest value for the right-hand side. The
calculation thus consists of finding an optimal Markovian approximation and evaluating
the corrections. For the convergence of the calculational scheme the optimization is crucial.
As optimization parameters we can use u0, and for each kernel a choice for u and v. The
practical optimization is a trade-off between the optimum and calculational simplicity. It
is expedient to have all kernels the same, with the exception of the first and last. They
have anyway a different role, carrying the system from below h to above h, while the
other propagators keep the system above h. So we are left with an initial (and final) u0,
the first (and last) pair u1, v1 and the bulk pair u, v. A further restriction stems from
the chosen integration procedure. The integrals can be quickly and accurately evaluated
using Gaussian quadrature, with a Gaussian as the weight factor. The initial f0(x) is
a Gaussian. Requiring that after an iteration the asymptotic behavior is still the same
Gaussian, u, v and u0 have to be related as u2 = v2 + u2

0. A constant Gaussian allows us
to use the same positions and weights in the Gaussian quadrature for each iteration. This
reduces the freedom from five to three parameters: u0, v1 and v.

Thus our calculational scheme starts out by finding for every n the optimal values
of the parameters u0, v1 and v. According to the inequality (33) this gives persistence
probabilities pn(h) which are too low. Consequently the total persistence and the mean
as calculated with this approximation will be lower than the exact values calculated from
the sum rules (10) and (14). Using the Gaussian quadrature, this is a fast routine. The
next step is the calculation of the second cumulant, which leads to an overestimation
of the persistence probability. Thus, including the second cumulant, the sum rules
are approached from above. As the second cumulant requires one to calculate many
correlation functions (going up with n2), this has already become a longer calculation. It
takes about an hour on a simple PC to calculate persistence probabilities up to n = 150.
Needless to say, the computation of the third cumulant, where the number of correlation
functions goes up as n3, is even more time-consuming. In practice we could calculate the
third cumulant up to n = 40 in a reasonable amount of time. Fortunately the changes in
the persistence probabilities due to the inclusion of the third cumulant are so small that
they do not influence the values of the sum rules.

7. Test of the approximation scheme

Before we carry out the computation of the persistence probabilities of the actual data, we
inspect a clean case by taking the correlation points gn from the analytic expression (3).
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Table 1. Sum rules for the test curve; cumulants and exact values.

II: δ = 0.04 IV: δ = 0.02

Sum First Second Exact First Second Exact∑
n pn(0) 0.9935 1.00002 1.0000 0.9932 1.0005 1.0000∑
n npn(0) 4.6998 4.8517 4.8420 6.3623 6.5417 6.5351

This has the advantage of noise-free input and allows us to vary the sampling rate δ. The
test consists of the calculation of the sum rules with the cumulant expansion outlined in
the previous section. We consider two samplings of the curve (3), δ = 0.04 and, twice as
narrow, δ = 0.02, which correspond closely to the experiments II and IV [21]). We take
κ = 50 in both cases. In table 1 we have summarized the sum rules for the total (10)
and mean (14) persistence in the first-cumulant and second-cumulant approximations, for
the two samplings of (3) with level h = 0 as the discriminator. We have calculated 100
points for sampling II and 150 points for IV, which suffice for saturating the values of the
sums. The third entry, exact, gives the values of the sum rules calculated from the ratios
of integrals. The accuracy of the total probability according to the first cumulant, giving
a rigorous lower bound, is amazing. For the mean value this is still impressive, but it
indicates that the probability for the higher values of n is somewhat too low. The second
cumulant, always overestimating the probabilities, makes up well for this deficiency of
the lower bound. The overall impression is that the scheme performs very well for points
taken from the curve (3). We have doubled the cut-off κ to see the influence. It marginally
lowers the curve, except that g1 is decreasing visibly. A larger cut-off makes the process
less ‘smooth’. This gives a deterioration of the bound. We have verified that including
the third cumulant does not change the numbers in table 1 appreciably.

8. Comparison with the experiments

The challenge is as regards whether the calculation of the persistence probabilities from
the data points of the correlation function is also accurate. First we test this again,
inspecting the sum rules, which are summarized in table 2. The entry ‘Exact’ refers to
the calculation of the sums using (10) and (14), which requires only the value of g1. The
marks around ‘Exact’ refer to the uncertainties in g1 determining the ratios, which are
not correlated with the uncertainty in the other gn, together determining the persistence
probabilities. The sums for state point II are based on 100 points, which is about the
number of reliable values of gn. The sums for state point IV are extended to 150 points.
In both cases the value of pn(0) is then so small that inclusion of further points will
not change the sums. The lower bound is considerably less accurate than for the gn

generated. This is not surprising. The above mentioned scatter in the data adds to the
non-Markovian character. Even if the process were strictly Markovian, the noise would be
seen as a deviation from Markovian behavior and would lead to a convergence questioning.
The second reason is that the measured g1 is quite low: g1 = 0.65 (II) and g1 = 0.79 (IV).
We noticed that less ‘smooth’ processes already have a slower convergence. However the
second cumulant approaches nicely the correct values, indicating that these calculated
persistence probabilities are accurate.
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Figure 2. Probabilities (lines) calculated from the measured correlation function
and measured probabilities (points) for state points II (lower curve, squares) and
IV (upper curve, circles) and h = 0.

Table 2. Sum rules for the experiments; cumulants and calculated mean.

State point II State point IV

Sum First Second ‘Exact’ First Second ‘Exact’∑
n pn(0) 0.9480 1.0024 1.0000 0.9339 1.0034 1.0000∑
n npn(0) 2.8760 3.7093 3.6513 3.2761 4.9344 4.7933

The real challenge is to see how well the persistence probabilities calculated from the
measured correlation points compare with measured probabilities. This is shown figure 2
for the two state points (with h = 0). The calculated points are taken from the second-
cumulant approximation, since the third cumulant has no appreciable influence. The
agreement for state point IV is as good as one can hope for with probabilities as small as
10−5. For state point II there is a systematic deviation for larger n. This may be caused
by artifacts resulting from the confocal slicing. 〈h2〉 and, therefore, the resolution relative
to 〈h2〉 are higher for IV than for II, leading to more pronounced artifacts in II [20]. Note
that the asymptotic exponential decay sets in around n = 30, which takes as long as 15 s
in real time.

9. Discussion

We have presented measurements for the correlation function and the persistence
probability of the fluctuating heights of a colloidal interface. We have developed a
calculational scheme which enables us to find the persistence probability directly from
the measured correlation function. This means that our scheme is independent of the
agreement of the correlation function with a function like (3). The only assumption is
that the distribution (4) is Gaussian, which stems from the fact that the thermal interface
fluctuations are small deviations from equilibrium. The predictions of the persistence
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probabilities from the measured correlation function agree very well with the measured
persistence probabilities.

Finally we would like to make a few comments on the results.

(1) Figure 2 shows that the curve approaches an exponential decay, albeit a window
from 30–100 points not being large enough for an accurate determination of the
exponent. As we mentioned, the two experiments may be seen as two samplings of
the same correlation function. In order to compare the two samplings we translate
the behavior to the time domain. For the two samplings we estimate the decay of
pn(0) ∼ exp(−ψ(δ)n). Since nδ = t/tc, the persistence exponent θ equals θ = ψ(δ)/δ.
For the smallest δ we find θ = 0.027 and for the larger δ, θ = 0.026. These two
values need not be the same. As observed by Ehrhardt et al [17], the exponent for
non-smooth processes is quite sensitive to the sampling rate. The discrete series does
not record what happens in between the measured points. The continuous process
might dive below the level h between recorded points. Such paths are excluded in a
continuous formulation, but are included in the discrete version [16, 20]. This leads
to a smaller exponent for a larger δ.

(2) We note that we cannot take the continuum limit for practical and essential reasons.
Making our δ smaller requires longer series to be calculated as the two samplings
show. But more importantly, a smaller δ will lead to a more sharply peaked kernel,
which ultimately has to approach a δ-function. Such a delta peak cannot be treated
by Gaussian quadrature, which has helped to speed up the integrations by about a
factor of a thousand with respect to e.g. a Simpson rule.

(3) We have checked that higher cumulants have virtually no influence on the persistence
probabilities calculated here. We noticed, however, that although the third cumulant
is small, it develops a linear dependence on n. It has no influence on the sum rule
results presented or on the persistence probabilities presented, since it changes only
the probabilities which are already too small to contribute. But it will have a non-
negligible influence on the decay exponent of the discrete series, showing up in a region
which is beyond our measurements. This also means that the experiments have not
entered the fully developed asymptotic regime.
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