
On Quantum Mechanics

keywords: varia/vrij/quantum.tex

1 Introduction

Quantum mechanics is about hundred years old. After the invention of classi-
cal mechanics by Newton, it is the greatest discovery in physics with the largest
impact on our view on the nature of matter. Everbody will agree that quantum
mechanics contains counterintuitive notions and libraries are filled with books
on the proper interpretation. So why trying to add something to seemingly
endless and often grotesque discussions (e.g. superpositions of dead and alive
cats) on the proper perspective on quantum mechanics?

This note is purely didactic and concerns the question of how to introduce
most adequately new students to the strange world of quantum mechanics.
The advice that I want to give is: abandon the historic route elaborating on
the analogy with waves (particle-wave duality) and rather stress the analogy
with stochastic processes governed by the Master Equation and with Brown-
ian motion in particular. Historically, stochastic processes were seen as less
fundamental and driven by an underlying chaotic mechanics. With the advent
of quantum mechanics the situation is reversed: stochastic evolution is the
basic principle and mechanics derives from it. I will show that the Schrödinger
Equation is a sort of square root out of the Master Equation. So I start with a
short discussion of the Master Equation.

2 The Master Equation

A stochastic process is governed by transition rates W�Y jY 0� of state Y 0 to Y .
The probability P�Y ; t� on state Y obeys the Master Equation (ME)

@P�Y ; t�
@t

�
X
Y 0
�W�Y jY 0�P�Y 0; t��W�Y 0jY�P�Y ; t�� �

X
Y 0
HY ;Y 0P�Y 0; t�; (1)

The first term gives the gain to state Y and the second term the loss from
state Y . The equation is deterministic i.e. the probability at any later time
t is determined by the probability at an earlier time (e.g. t � 0). Somewhat
more precise: P�Y ; t� gives the conditional probability to find the system in
state Y at time t given the probability distribution P�Y ;0� at time t � 0. In
this discrete formulation the time evolution results from a matrix operation
on the distribution. The matrix HY ;Y 0 is called stochastic since the sum over the
columns vanishes, as (1) shows. This property guarantees the conservation of
probability X

Y
P�Y ; t� �

X
Y
P�Y ;0�; (2)

implying that one of the eigenvalues of HY ;Y 0 is zero; the others must have a
negative real part, otherwise the probability distribution blows up.
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A specific example of the ME is the Brownian particle. The state of the
particle is the position r. When the transition probabilities are confined to
small steps, the ME can be written in the form of a Fokker-Planck equation.
Introduce the step

s � r� r0 (3)

and write the transition probability as

W�rjr0� � W�r0; s�: (4)

Using this notation the ME gets the form

@P�r; t�
@t

�
Z
dsW�r� s; s�P�r� s; t�� P�r; t�

Z
dsW�r;�s�: (5)

The assumption is that W and the probability P depend smoothly on the first
argument r. Then we may expand the first term in the Master Equation with
respect to r, will keeping the second argument in its full glory

W�r� s; s�P�r� s; t� � W�r; s�P�r; t�� �s � r�W�r; s�P�r; t�� � � � (6)

Inserting this expansion in the ME (5), the first term in the expansion cancels
the second term in the ME. Thus the ME transforms into the Fokker-Planck
equation

@P�r; t�
@t

� �r � a1�r�P�r; t��
1
2
rr � a2�r�P�r; t�: (7)

where the ai�r� are the jump moments

ai�r� �
Z
ds siW�r; s�: (8)

If the jumps are isotropically distributed, a1 � 0 and if they are independent
of the position one has

a2�r� � 2D I (9)

and the Fokker-Planck equation gets the form

@P�r�
@t

� D�P�r; t�: (10)

D is the diffusion coeffient of the Brownian particle. There are good mathemat-
ical reasons to terminate the expansion (6) after the second term, but that is
not important for the discussion here. We repeat that P�r; t� is that the proba-
bility to find the Brownian particle at position r at time t given the distribution
P�r;0�. If it was found to be at t � 0 at the origin P�r; t� would be a � function
at the origin, which would spread out as a Gaussian. If at t it was found to be
at position r0, the distribution P�r; t� would start again as a � function around
position r0. No one would see the probability distribution as some physical
property of the Brownian particle.

By fourier decomposition one sees that all the eigenvalues of the diffusion
operator are negative except one. All the wave components with finite wave
vectors decay, the one with wave vector zero is invariant.
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To phrase the physics of the Brownian particle in a formulation akin to the
quantum mechanical: the brownian particle is in a state, which can be found by
measurement of the position. By measuring the position again at a later time
one finds a new state with a probability given by the solution of the ME with
the original state as starting point. So the ME gives the transition probabili-
ties from state to state. One can only measure displacements of the Brownian
particle, it has no velocity. Although the evolution of the ME is determinis-
tic the dynamics is not deterministic within the frame work of the stochastic
process.1

3 The Schrödinger Equation

The Schrödinger Equation (SE) has the form

i�
@	�Y ; t�
@t

�H 	�Y ; t�; (11)

where 	 is the wavefunction (state) of the system. This is also a determin-
istic equation, since the initial value of the wavefunction 	�Y ;0� determines
the behavior at later times. The operator H is hermitian and this yields the
conservation law Z

dY j	�Y ; t�j2 �
Z
dY j	�Y ;0�j2; (12)

which is interpreted as conservation of probability. Usually the variable Y gives
the spatial state of the system and the operator H is a differential operator.
For a free particle it is given by the kinetic energy operator

H � � �2

2m
� (13)

and Eq. (11) becomes
@	�r; t�
@t

� i�
2m

�	�r; t�: (14)

The mathematical analogy between Eq. (10) and Eq. (14) is striking. Our view-
point is that the SE is a sort of square root out of the ME and we want to show
that this analogy is didactically very instructive. Square roots are not innocent
though. To mention a few profound differences: the wave function is complex
and the time evolution is unitary and not decaying. So while a plane wave
decays in the ME, it evolves via a phase factor in the SE.

As Eq. (12) shows 	 is not a probability but the “square root” of a prob-
ability. Also position and velocity become on equal footing. If one is sharp
the other is undetermined and in general the product of their uncertanties is
given by �. Both the ME and the SE have, as linear equations, the superposition
principle. One can add wavefunctions in the SE and probabilities in the ME.2

1One should not invoke the fact that there is, in the case of the Brownian particle, an
underlying deterministic theory in a more detailed description.

2This is in fact the basis of the ME, as it is derived with the aid of the Kolmogorov theorem,
which states that the transition probabilities from Y 0 at t � 0 to Y at t is the sum of all paths
from Y to Y " at some intermediate time t0 (with 0 < t0 < t) and from Y " at t0 to Y at t.
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The analogy with stochastic processes is even stronger for many particles.
Probabilities for more than one particle are naturally defined in the product
space of the particles. The probability on a pair of particles is a function in a
six-dimensional space. So the wavefunction of two particles is a function in a
six-dimensional space. This makes the analogy with waves even more obscure.
For two well-separated particles a new twist of quantum mechanics comes
into play. Due to superposition, the probability distribution does not have to
be the product of the probabilities on the particles, what one would expect
for independent systems. So funny correlations (entanglement) between the
particles may arise, which can not occur in the classical ME.

4 Stochastic evolution by path-integrals

An instructive way to appreciate the similarities and differences between the
SE and the ME, is to look to the solution of the equations as a weighted sum
(integral) over paths. In the ME a path of the system is generated in two steps.
From a starting state Y one remains in that state for a time �t drawn from
a probability distribution, related to the diagonal elements of the matrix H.
After this �t one makes a transition to a state Y 0 based on the transition rate
W�Y 0jY�. The solution is realized by generating “all” paths and adding the
contributions of each path. This procedure resembles the experimental way
of finding out probabilities. One can either repeat the experiment in the same
circumstances or observe the system for a long time.

The solution of the SE may be generated by the Feynman path integral for-
malism. All paths going from an allowed initial state to an allowed final state
contribute. Curiously enough, the classical path gives the largest contribution.
The fundamental difference is that in the ME the weight of a path is essentially
positive, while it is not in quantummechanics. The difference between the ME
and the SE is that in the former the probabilities are added and in the latter
the wavefunctions. So the phases in the wavefunctions, which do not enter in
the probabilities, are important in doing the path integral. In the two-slit ex-
periments there are positions on the screen where the two paths destructively
interfere.

Of course path integrals are not the only way to obtain the solution of the
equation. In some cases an analytic solution is possible. Then path-integrals
are a clumsy way to reach the same result.

5 Differences between the equations

To illustrate the differences, we take one of famous experiments in quantum
mechanics: the two-slit experiment. An electron is fired at a barrier with two
open slits. After passing through the slits, the electron is detected at a screen.
According to the ME the probability to arrive at a point at the screen is the sum
of the probabilities to pass via one of the slits. Since probabilities are essen-
tially positive all points on the screen have a positive probability for detecting
the electron.
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However, the screen displays an interference pattern, since in quantum me-
chanics one must add the wave function and not the absolute squares. The
interference pattern is reminiscent of coherent light passing through the two
slits. No wonder that the analogy with waves is invoked and that the SE is seen
as a wave equation. An unfortunate misnomer, suggesting that 	 is a wave of
a field, as Schrödinger originally thought. The analogy is misleading, since one
can also detect the passing of the electron through the slits. The outcome is
that the electron is always detected as passing through one of the slits, never
through both at the same time. Detection of the electron at one of the slits de-
stroys the interference pattern. A wave, on the contrary, interferes with itself,
since it is half present at both slits. The result for the electron is not strange
if one realizes that quantum evolution is a stochastic process. So if the elec-
tron is found at one slit one must continue with that new initial value for the
wavefunction.

The fact that the electron sometimes behaves as a particle (when hitting
the screen) and sometimes as a wave (when passing through slits) is seen as
particle-wave duality, which is lifted by Bohr to an even deeper (and corre-
spondigly less understandable) Complementarity Principle. One has invented
for the detection of the electron the term collapse of the wavefunction. This
was confusing: do measurements collapse the wavefunction? Does the wave-
function stop to obey the Schrödinger during the measurement? Following
Bohr the answer is no, because the electron interacts with the measuring de-
vice and this causes the wave function to collapse. There is a whole industry
persuing the unholy route of studying the evolution of the electron in interac-
tion with the measurement device. It is of course interesting to show that, in a
weak measurement, the density matrix of the measuring device gradually be-
comes diagonal, such that it behaves classically. Then the idea is that classical
distributions may be “collapsed”, but one forgets that it implies a simultane-
ous collapse of the electron component.

A further analysis would require to include the interaction of the eyes of
the observer with the measurement device etc. Ultimately one has to acknowl-
edge the stochastic nature of quantummechanics. No calculation, with all the
interaction of the environment included, can tell through which of the two slits
the electron passes. Including of the measurement device is also unnecessary,
since in a good measurement the transition probabilities are determined by
the quantum system (electron) and not by the measurement device. It is the
beauty of quantum mechanics that one can show, within the theory, that no
hidden parameters exist from which the transitions could be derived.

No one is surprised that a measurement leads to a reduction of the prob-
ability distribution. If one detects a Brownian particle, somewhere away from
the origin where it started, everyone will continue with that knowledge on the
probability distribution. One could call that a “collapse of the probability dis-
tribution”, but there is nothing physical in this “collapse”. In the same way the
outcome of the measurement has changed the initial condition in the SE for
the probabilities in further experiments.
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6 Psychology of the Schrödinger Equation

The stochastic character of quantum evolution is obvious and unavoidable.
Anyone has to agree that the outcome of a two slit-experiment is intrinsically
unpredictable (no hidden variables). Still the SE is given some status as the ex-
act mechanics of the wave function. Nico van Kampen summarizes his opinion
aptly in his fourth theorem (with a slight modification):

Theorem IV: Whoever endows the wave function with more meaning than
is needed for computing transition probabilities, is responsible for the conse-
quences.

The psychology of the status of the SE is understandable. Quantum me-
chanics was developped to replace the classical determinisitic mechanics and
in fact the quantum equations are mostly constructed from the classical equa-
tions by replacing variables, as position and momentum, in a well defined way,
by operators. Later on there appeared operators without a classical analog
such as spin, (which Dirac derived by studying the square root out of the Klein-
Gordon equation!). As the hamiltonian is the basic ingredient in the evolution
of the wavefunction, all the experience with hamiltonians, such as conserva-
tion laws, can be exploited in the SE.

Stochastic processes were, so far, known to be approximate. One knew the
underlying mechanistic motion of the Brownian particle. Moreover the ME can-
not be fundamental, since it is not time reversal invariant, while a fundamental
theory has to have this property. In fact in quantum mechanics the situation
is opposite: the SE is time reversal invariant and von Neumann showed that
there cannot be an underlying deterministic mechanics.

There is an intimate connection between quantum and classical mechanics
following from the construction of the quantummechanical hamiltonian oper-
ator. One can calculate under what conditions the quantum theory starts to
coincide with classical mechanics. The cross-over from quantum to classical
behavior is controlled by � in combination with other appropriate variables to
dimensionless combinations. Sufficiently far beyond the cross-over value, the
predicitions of quantum mechanics are, for all practical purposes, the same as
that of classical mechanics.

The unitary evolution of the wave function of a quantum system is denoted
as conservation of information. This becomes a big point in astrophysics: can
quantum information escape from a black hole? As soon as the word infor-
mation is used, the discussion becomes a bit vague. The sort of information
carried by the wavefunction is nothing else than a means to calculate proba-
bilities.

Let me use again the two-slit experiment as illustration. One would think
that by measuring the passage at the slit, information is gained on the elec-
tron. One the other hand information on the electron is destroyed since its
wave function “collapses”. I presume that the proponents of the “conservation
of information” will argue that the combined system of electron and measur-
ing device evolves unitarily, so total information is conserved. But by unitary
evolution the combined system remains forever in a superposition of possible
outcomes, while in reality only one happens. So the sort of information carried

6



by the unitary wavefunction of the combination is at odds with the reality.
Suppose that we did a two slit experiment with classical particles, in which

not only the arrival distribution at the screen is observed, but also through
which slit the particle has passed. Then one has two options to calculate
the distribution at the screen: use the information of detection at the slits
or ignore it. Both lead to the same result. Using it, one can calculate two sub-
distributions related each to a passage at one of the slits. The sub-distributions
contain more information. Their sum yields, by Kolmogorov’s theorem, the
same as calculated without the knowledge of passing.

The situation in quantum mechanics is different. Measuring both passing
through the slit and arrival at the screen, gives no interference pattern. So,
if the passing through the slits is measured but ignored (may be someone
else has measured them), one draws the wrong conclusion about the probabil-
ity distribution at the screen. This is the clue why eaves dropping shows up
in transmission of quantum information and not in classical information. It
prompts me to formulate the following theorem:

Theorem IVa: Anyone ignoring information provided by measurements, draws
wrong conclusions.

It is remarkable that even Einstein, one of the founding fathers of Brownian
motion theory, had such a trouble accepting the stochastic nature of quan-
tum mechanics. Originally he set up a stochastic interpretation, but later got
convinced that “God does not play dice”, on which Bohr replied: “How do you
know what God does?”

7 Measurements of Quantum Systems

In a discussion on Quantum Mechanics one cannot omit the role of the mea-
surement. The reason is that Bohr, in his famous discussion with Einstein,
placed such a large role on the disturbative character of the measurements
due to the uncertainty principle. In the quantum world everything fluctuates,
so one may ask what the measurement of a property means.

Before discussing this question it is good to note that there are few mea-
surements that probe the wavefunction in a fundamental way as e.g. in the
two-slit experiment. The most striking success of quantummechanics is the
prediction of properties of matter: the values of spectral lines, the possible el-
ements in the periodic table, the covalent bonds, magnetism and superconduc-
tivity, the existence of bosons and fermions and their profound implications.
All these properties do not require an interpretation of the wavefunction or a
theory of the measurement.

In my opinion there is nothing special about a quantum measurement. Mea-
suring is the art of amplification, in particular for small systems. (Or of mi-
nuscule effects, such as measuring gravity waves, although this has nothing
to do with quantum physics.) To detect a property of a particle is to amplify
maximally the effect of the particle on the measuring device, with the minimal
change of the measured property. So the game is to transfer an effect of the
particle to the macroscopic world. The trace of an elementary particle in a
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bubble chamber is a nice example.
Thus the problem of quantum measurement seems to boil down to the

question: is there a fundamental difference between the micro and macro
world? Quantummechanics tells that there is no fundamental difference, but
a cross-over from the micro regime to the macro regime. In the quantum the-
ory one can indicate where the cross-over to classical behaviour occurs. For
instance a particle with mass behaves quantum-mechanically, if the mass is of
the order of the electron, but classically when it is of the order of the mass of
the moon. Sufficiently far beyond the cross-over regime, quantum fluctuations
play no role anymore.

It is the cross-over to classical physics that allows for sensible measure-
ments in quantum mechanics. A valuable measurement leaves an imprint in
the macroscopic world where values do not fluctuate and are permanent.

The distinction between the quantum mechanical and the classical world,
looks controversial but it is a matter on which side of the cross-over one is.
So it is in my view a tautology: the classical world is the domain where quan-
tum fluctuations do not matter and values remain “forever” (or are completely
determined, such as the position of the moon).

8 Conclusion

By accepting that the quantum evolution is fundamentally a stochastic process,
one avoids difficulties appearing in the interpretation of quantum mechanics
as the “mechanics of the wavefunction”. The mathematical description of a
stochastic process is just as well defined as the solution of classical determin-
istic equations of motion. On the other hand, one should stress, the difference
in the rules of calculating transition probabilities in quantum and classical
stochastic processes. The fact that superposition holds for the wavefunction
and not for the probability distribution, is the origin of the fundamental dif-
ferences between quantum and classical stochastic processes and all coun-
terintuitive results, as for instance the Bell inequalities, can be traced to this
difference.

In order to introduce students to the amazing world of quantum processes,
it is wiser to make them familiar with stochastic processes, than to bother
them with such vague notions as particle-wave duality or with useless super-
positions of micro- and macro objects.

I am indebted to critical comments of Michael Nauenberg, Henk Hilhorst,
Gerard Nienhuis and Dennis Dieks.

November 2017, J.M.J. van Leeuwen
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