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1 Quantum condensed matter physics: the princi-
ples.

1.1 Some metaphysics.

This text attempts to be an introduction to the subject which could be called ‘con-
ventional quantum condensed matter physics’. Before explaining what is meant with
‘conventional’, let me first define the discipline as a whole, including its unconven-
tional aspects: quantum condensed matter physics is the subdiscipline of physics fo-
cussing on the properties of macroscopic objects in terms of the collective behaviours
of (near) infinities of its microscopic, quantum-mechanical constituents.

A student of physics should be nasty reading the preceding paragraph, and ask the
question: why should we worry about these macroscopic things which we can see
with our own eyes? Isn’t it so, that our grandfathers put all their skills in trying
to slice this unprofound stuff in smaller and smaller pieces, finally discovering this
breath-taking climax of the human pursuit for knowledge: atomic-, nuclear- and
particle physics? Not so long ago it was indeed believed that the only alley leading
to the most fundamental aspects of nature was by smashing matter into smaller and
smaller pieces. Some twenty years ago this attitude changed, not in the last place
due to developments in high energy physics. Both at the high energy end (particle
physics) as well as at the low energy end (condensed matter physics), nature is of an
irreducible many-particle nature - it is only in the middle (atomic-, nuclear physics)
that few particles make sense. In the presence of these (near) infinities of interacting
constituents the face of physics itself changes. New principles appear of an entirely
different nature than the laws governing the behaviours of few-particle systems. These
could be called the ‘laws of emergent behaviours’.

A first problem facing the novice in this field is to recognize the non-triviality of these
laws. They penetrate nature to such an extent that they appear as very familiar and
familiar things tend to be taken for granted. A typical example is the ‘first’ law:
‘the whole is more than the sum of its parts’, or ‘more is different’ using Anderson’s
one-liner!. In physics, this principle acts typically in the following way: one starts
out considering an ‘ultraviolet’, a regime of high energy and small spatial dimen-
sion, which usually looks rather boring. In condensed matter physics, the ultraviolet
typically consists of isolated electrons and atoms having the simple properties as ex-
plained in quantum-mechanics textbooks: they have a position and a momentum,
and carry internal degrees of freedom like spin. In addition, these elementary con-
stituents have the property that they interact with each other. Macroscopic reality
is approached by putting more and more of these elementary constituents together.
In this process, the ‘more is different’ law starts to act: the system of particles be-

'T refer to a remarkable article by Anderson for a more general discussion: P. W. Anderson,
Science 177, 193 (1972). In addition, Anderson’s book ‘Basic Notions of Condensed Matter Physics’
(Benjamin/Cummings, Menlo Park, 1984) is recommended for further reading. The student is
warned: this is not an easy book!



haves in a way which is qualitatively different from that of its elementary constituents.
By increasing the number of constituents the lowest-lying excitations of the system
move down in energy, while the spatial scale increases. The appearance of nature de-
pends fundamentally on the energy- or length scale which is probed in the experiment.
This “flow’ of physical behaviours as function of particle number and energy (time-,
length-) scale is called the renormalization flow.

Some general statements can be made about the nature of this scaling flow. One
possibility is that the system settles in a critical state: every time the size of the
system increases by an order of magnitude, the new (bigger) system has the same
properties as the old (smaller) system. The system becomes self-similar, both in
temporal and spatial aspects. This seems the possibility choosen by nature in the
high-energy realms: relativistic quantum-field theory can only be consistently formu-
lated if criticality is imposed. Criticality is also quite important in the macroscopic
realms: it occurs at finite temperature phase transitions, as well as at the quan-
tum phase transitions taking place at zero-temperature. One of the great triumphs
of modern theoretical physics is the invention by Wilson and others of a rigorous
mathematical theory of the critical state, the renormalization group theory. This is
a rather advanced subject which is deliberately avoided in the present text.

Next to the smooth flow of the critical state, the renormalization process might have a
more jumpy character as well. In the jargon this is called ‘projective renormalization’
and some sophisticated examples of this kind of renormalization will be treated in
this text. At some point in the renormalization process ‘bound states’ might be
formed. These are new collective objects with well defined properties, having a special
stability so that it costs a finite energy to break them up: an energy scale (or ‘gap’,
also called ‘mass’) appears. This makes it possible to define a new ‘effective’ theory
describing the system at energies less than this gap in terms of the new composite
objects and their mutual interactions. The latter are called ‘residual interactions’ and
can be derived by considering virtual processes involving the (bare) particle states
above the energy gap. This is actually quite familiar. Nuclei are bound states of
protons and neutrons, atoms are bound states of nuclei and electrons and molecules
are bound states of atoms. Atomic physics is the effective theory which remains after
the nucleons have been ‘integrated out’ (the residual interaction is the Coulomb force
coming from the nucleus) and chemistry has to do with the effective theory which
remains after integrating out the atomic core-electrons?,

Chemistry, atomic- and nuclear physics have in common that they study bound states
of a relatively small number of particles. On the other hand, condensed matter physics
and high energy physics both deal with systems build from an infinity of constituentss.

2Notice that nucleons cannot be considered as simple bound states of quarks. In quark con-
finement, the state of the quantum chromodynamics vacuum plays a crucial role. Although this
phenomenon is still not understood, it is believed that it finds its origin in some condensation
mechanism.

30ne could also add statistical mechanics to this list. A problem is that it is nowadays impossible
to distinguish the disciplines of statistical mechanics and theoretical condensed matter physics in a
reasonable way - it is just the same. On the introductory level, statistical mechanics is presented



In condensed matter physics, one tries to explain the behaviours of macroscopic
bodies and every gram of macroscopic matter contains of order 1023 particles - closer
to infinity than to a few. It turns out that special varieties of emergent phenomena
occur in this limit, and these are the subject of quantum condensed matter physics.

A first peculiarity of the ‘infrared’, the physics of the system at long length scales
and small energies, is that one can be suprisingly sloppy in the description of the
nature of the microscopic ‘ultraviolet’. Starting out from quite different microscopic
systems, one ends up with qualitatively similar macroscopic physics. For this reason,
one might as well start out with the simplest possible model for the microscopic
physics having the properties which really matter (symmetries, conservation laws,
dimension of Hilbert space). It is far easier to establish the qualitative features of
the collective system from the model. One is left with the wrong numbers, but the
spectrum of qualitative behaviours of macroscopic systems is of such a richness that
one can afford to not worry at all about quantitative accuracy. In practice it is even
rarely possible to establish these numbers, and one leaves it to the experimentalists
to find the parameters of the effective theory. One is sure that in principle it should
be possible to ‘deform’ the model theory in the true (quantitative) theory without
changing the qualitative features at all. Anderson calls this the principle of adiabatic
continuuty.

One will be constantly confronted with this general principle studying the remainder
of this text. In fact, there is not a single occasion where the starting point will be a
precise and fully realistic description of the microscopic reality. Instead one will find,
time after time again, highly simplified models. If one is used to the quantitative
rigor of e.g. atomic physics, this habit might at first give an impression that one is
dealing with some pseudo-science. Keep in mind, however, that the validity of this
model appoach rests on the powerful principle of adiabatic continuity.

A next principle emerging in the thermodynamic limit is the highly non-trivial prin-
ciple of spontaneous symmetry breaking. One learns from quantum mechanics that
nature is in first instance organized according to symmetry principles. This has to
be learned, because symmetry has a less prominent role in the macroscopic world
surrounding us, which obeys the laws of classical physics. This dominating role of
symmetry gets lost. A clear way of expressing this difference is as follows: classical
objects do not correspond with quantum-mechanical eigenstates.

Consider a piece of ordinairy macroscopic matter, like the chair you are sitting on. It
is not at all a problem to write down an exact Hamilonian for this chair in terms of the
atomic physics effective theory: a near infinity of carbon-, hydrogen atoms, etcetera,
with their mutual interactions. This Hamiltonian will be translationally invariant:
any of the atoms can be located anywhere in space. Because the Hamiltonian has this
invariance, the eigenstates of the Hamiltonian should obey this invariance as well: it
should be impossible to determine where any of the atoms are from the eigenstates of
the Hamiltonian. Reality looks of course very different. In solid matter, the atoms

with a stronger focus on thermal fluctuations, while condensed matter physics emphasizes zero-
temperature quantum aspects.



form a (more or less) regular array and every atom has to keep a fixed distance to
its neighbours in order for the solid to exist. Hence, the translational invariance on
the level of individual atoms got lost and all what is left is a single invariance for the
motion of the body as a whole.

Quantum-mechanics is of course more fundamental than tables and chairs and it
should be possible to write down the quantum-mechanical wave functions describing
the latter. As I just discussed, these states are not eigenstates and quantum mechanics
alone is not sufficient to explain why these states are not eigenstates. We need in
addition the help of the laws of the big numbers: although a few particles cannot
break the symmetry spontaneously, an infinity of them can.

This phenomenon of atoms forming chairs, thereby violating the invariances of the
‘tundamental’ Hamiltonian (breaking the symmetry), is quite general and the forms
of matter it produces are called ‘classical condensates’ 4. These classical condensates
dominate the macroscopic world. Next to the ‘crystalline state’ (to which chairs
belong), it also occurs in less-familiar situations. Magnets are rather close to crystals.
However, the same basic mechanism is also active in truely exotic states of matter,
like superconductors and superfluids. Even the Fermi-liquid state, describing the
collective state of electrons in metals, belongs to this category. They have all in
common that the symmetry breaking brings the condensate in a collective state which
obeys the laws of classical physics. A description of the mechanism responsible for
this phenomenon will be the main theme of these lectures.

The theory describing the classical condensates was gradually developed during the
fifties and sixties. Untill not so long ago, it was believed that all macroscopic con-
densed states belong to this classical category - for this reason I like to call it con-
ventional condensed matter physics. During the last two decades or so, the emphasis
has been shifting toward systems which do not conform to this classical pattern. The
unconventional part of quantum condensed matter physics deals with macroscopic
systems showing collective behaviours which no longer can be understood within a
classical framework. Examples are a variety of quantum critical systems, but also
the incompressible quantum liquids which are characterized by an energy scale. Al-
though the research frontier is no longer in the classical sector of reality, a thorough
understanding of this sector is a prerequisite for the study of the non-classical states:
at the least, one should learn to appreciate the unrobustness of the principles on
which our daily world rests.

1.2 Classicalness as an emergent phenomenon.

As I already announced, there is a single unifying mechanism which explains the
behaviours of classical condensates, from simple crystals up to fermi-liquids, in terms

4Next to these condensates, the macroscopic world consists also of classical gases and liquids.
The classical nature of these disordered states finds it origin in a different mechanism - the difficult
concepts of temperature and entropy play here a central role. This is also well understood, but the
required formalism puts this issue beyond the limits of the present course.



of special many-particle quantum states. This mechanism is called ‘semi-classical
mean-field theory’, often abbreviated with ‘the’ mean-field theory (there are others
). Despite its amazing succes, a general mathematical proof for the validity of mean-
field theory is not yet delivered - in principle, it should be possible to deliver this
proof because the microscopic theory is known. Although it cannot be written as
a collection of theorems, it does have the status of physical law in the sense that it
accurately describes what nature does. It is a typical example of a theory in physics:
without the help of experiment, it would never have been discovered.

Reading this section for the first time, it might appear as rather abstract and incom-
prehensible. 1 will try to lessen this by quoting examples derived from the context of
the familiar crystalline order. This section is intended as a central reference point for
the further reading of this text. You will notice that it will gradually become alive,
seeing it at work time after time again.

The classical zero-temperature state of matter is completely specified by a single
axiom on the nature of the macroscopic wavefunction (issues (i)-(iii)). Everything
else is deduced from quantum-mechanics:

(i) Everything, including macroscopic objects, is described by states in Hilbert space.
In many particle problems, the relevant Hilbert space is the Fock space as discussed
in chapter II. It appears possible to construct a special kind of many-particle state
which describes a classical macroscopic object. The many-particle wave function
|Bci), describing the ground state of a classical condensate, has a finite overlap with
a single determinant wave function |®%,) which is further specified in (i) and (iii).
Explicitely (Ng is the dimension of Fock space),

[Der) = A|Dey) +Zaz|‘1> (1.1)

with A finite.

This is the (unproven) conjecture on which the whole building rests - the remainder
follows by mere deduction. Why is it remarkable? As you might know, the Hilbert
space of relevance to many particle problems (Fock space) has a very large dimension
(like Niy = 2¥, N — oo, for the simplest spin problem). The eigenstates should
consist of linear superpositions of enormous numbers of the single determinant states,
which span Fock-space. In fact, in some cases it can be rigorously shown that not
a single basis state has a finite weight in the ezact eigenstates of the macroscopic
system. The miracle is now that the inezact wave function (1.1), ‘dominated’ by only
one of these basis states, becomes ‘correct’ as well. As we will discuss in chapter V,
this apparent paradox is believed to find its resolution in a subtlety occurring in the
approach to the thermodynamic limit.

(i) The ‘classical’ state ®Y,; is constructed from rather special single particle states.
These states actually define the classical equivalents of the quantum mechanical single
particle states, and are best called ‘generalized coherent states’. Consider a set of
second quantized operators, creating and annihilating microscopic entities {XZ X }.
These describe the physics at the energy scale where the tendency towards classical
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condensation becomes first visible. For instance, in simple van der Waals crystals,
the XT would create complete atoms, and the atoms themselves should be in their
precise atomic quantum states. In terms of these operators, wavepackets are formed,

V() = S og({mh %] (12)

corresponding with the ‘most classical’ version of the particle, where the set of scalars
{n;} describes the classical phase space variables of the particle. For atoms in crystals,
the Y1's are the familiar wave-packets, localizing the particle as much as possible
around an average classical position R;. In this step, the special role played by
symmetry in quantum mechanics gets lost - the wave packet is constructed in such a
way that the position of the atom is determined, although one is still free to choose
that position. If the symmetry is more complicated, it is less obvious how to ‘translate’
the invariances of the quantum system into its remnants on the classical level. This
art is called ‘generalized coherent states’ and we will meet less trivial examples in the
context of spin problems and superconductivity.

(iii) The single particle states (1.2) do not make sense on their own. They only
relate to nature if an infinity of them work together in forming the ‘classical’ single
determinant states,

|98 ({n}) = LY ({mi})lvac) (1.3)

where the set of scalars {n} describe the classical degrees of freedom of all N particles
(lvac) is the ‘bare’ vacuum). This has to be stressed over and over again: the classical
state of nature is a collective effect.

(iv) Observable quantities in quantum mechanics correspond with operators which
can be expressed in terms of the algebra {X;, X JT }. For instance, density and current
operators are build from the bilinears,

Wy = XX, (1.4)

The qualitative properties of the classical system follow from calculating the expec-
tation values of these operators with regard to the state (1.3). For instance,

Wi ({n}) = (@2,({n})IWijl2ex({n})) (1.5)

and the W({n})’s relate to the classical densities and currents. For instance, the
expectation value of the operator measuring the density of atoms in real space would
specify the positions of all atoms if the wave function (1.3) would have been con-
structed from spatially localized wave packets. Alternatively, using spin coherent
states, (1.5) would map su(2) (spin-) algebra on its classical ‘image’: an ‘arrow’
(classical dipole) of fixed length which can point in any direction, parametrized by
the Euler angles {n} =6, ¢.

(v) The classical energy of the system is determined by the expectation value of the
Hamiltonian,

Egy({n}) = (®e({nh)H|2e({n})) (1.6)



Because the parameters {n} are still arbitrary, (1.6) defines an energy landscape which
is in principle quite complicated: the energy as function of the classical phase space
parameters {n} (e.g., positions and momenta of all atoms, or the Euler angles of
all spins). However, because the 7’s are scalars, the classical ground state (state of
lowest energy) can be determined by minimimizing the classical energy to all n’s,

0 B¢, _
on; N
which is much easier than diagonalizing the Hamiltonian as is required in quantum-

mechanics. Let us label the set of phase space parameters minimizing the classical
energy with {n°}. The classical ground state as appearing in (1.1) is then given by,

|20 = [Peu({n"}) (1.8)
Although often the ground states are emphasized, notice that the ®%, with arbitrary
n’s are still genuine classical states, now describing the classical ezcitations.

0. (1.7)

(vi) The ‘classical’ states (1.3) do not yet correspond with the proper states (1.1)
describing the classical condensates. They are actually no more than ‘handles’, re-
quired to get at the latter. The crucial point is, however, that the true states (1.1)
can be reached from the classical state (1.3) by perturbation theory. This is implied
by the assumption that the overlap between the true state and the classical ansatz
is finite. In problems with an infinite number of degrees of freedom, perturbation
theory acquires a different, more fundamental status than is the case in few body
problems. In the latter, perturbation theory acts to gradually improve the numbers.
In the former, the zero-th order has to be correct in the sense that the overlap with
the true wave function has to be finite, otherwise the perturbation expansion will
diverge. These infinities cannot be cured within perturbation theory, and the only
remedy is to search for a better choice for the zeroth order which is the starting point
of the expansion. In practice, perturbation theory is the most important diagnostic
tool available. One chooses some collective state as zeroth order and subsequently
one looks for infinities in the perturbation expansion around this state. If these occur,
one is sure that the state is wrong and that the physics has to be truely different from
the expectations which are hard-wired in the choice of zeroth order. Unfortunately,
this procedure is not always fool-proof. The infinities might occur in any order, while
in practice one is often limited to the evaluation of only the lowest order terms. As we
will see, in some special cases it is nevertheless possible to proof that the perturbation
expansion is convergent up to all orders - see chapter 7.

(vii) Although the terminology is non-standard, I like to call the state |¢¢;) (1.1)
(‘dressed up’ with perturbation theory) the ‘semiclassical’ state, and the single de-
terminant state ®%, the ‘classical’ state. In fact, the classical state already yields a
qualitatively correct description of the physical nature of the system. The reason is
simple. All what matters are the expectation values of the operators corresponding
with observables,

<(I)Cl|mj|q)0l> = AQWE’({’?}) +
Z(A*ai<q)%l|wij|q)i> + Aaf(@ﬂWij@OCl)) + Z a; a; <(I)Z|WWM)9)

% i’



although the terms in the second line will usually average out to zero, this does not
really matter as long as the overlap A between the semi-classical and classical states
is finite. The magnitude of the classical property Wig- will get reduced by an amount
A? but it will remain finite, and its finiteness is what really matters. For instance,
in the classical crystal the atoms are precisely at their crystalline positions, but in
the semiclassical crystal the atoms show zero point motions. However, as long as all
atoms spend a finite amount of time at their classical lattice positions, the crystal as
a whole still exists.

What did we actually achieve? The above is a precise description of the relationship
between quantum physics and classical physics: the latter is a special case of the
former, realized as a collective effect in the limit where the number of constituents
approaches infinity. Notice that this is quite different from the way this relationship
appears in elementary quantum-mechanics textbooks. The inventors of quantum
mechanics exploited some analogies with classical mechanics to get some guidance in
the process of formulating quantum-mechanics. The founding fathers did not know
about the far more difficult many particle quantum-mechanics, needed to understand
the above. In this historical setting, it becomes understandable that great minds
(like Einstein) got seriously confused. This confusion propagates untill the present
day in the field calling itself ‘foundations of quantum-mechanics’: it is insisted on
that classicalness is more fundamental than quantum-mechanics, and one should
somehow force quantum-mechanics to conform with the laws of classical physics. This
is silly: classicalness is nothing more than a collective effect of quantum mechanics
and, in a rigorous sense, quantum mechanics is more complete than classical physics:
information concerning the fully quantum-mechanical system gets lost if the special
case ‘classical physics’ is realized (e.g., the state (1.1) is not an eigenstate)®. This
observation is actually not at all generally appreciated, and only recently attempts
are undertaken to reformulate the foundations of quantum mechanics taking classical
condensation into account®.

A first advantage of this modern, many-particle view on the phenomenon ‘classical
physics’ is that it shows that the classical nature of macroscopic bodies is actually
not at all self-evident: there exists no theorem implying that the construction (i)-(vii)
holds without exceptions. I already pointed at the existence of a number of excep-
tions (the ‘unconventional’ part), and I will present some cases in the text where one
actually can proof that whatsoever is realized is something different from a classi-
cal entity. A requirement for the stability of the classical state is that the classical
energy landscape (1.6) is characterized by a a global minimum. This is easy to un-
derstand. Imagine that this energy landscape is characterized by an infinite degree of

5This issue becomes actually rather acute in the context of quantum-gravity: the classical limit
(general relativity) seems here to be so far removed from the full quantum theory that the former
yields no guidance at all with respect to the formulation of the latter.

SFor instance, it appears unnecessary to introduce separate axioms concerning the collapse of
the wave function in the measurement process (Copenhagen interprtation). This can be understood
as a many-particle effect already contained in the basic axioms of quantum-mechanics: the exact
wavefunctions of the test particles have to become part of the inexact wavefunction describing the
measuring machine, which itself is a classical condensate.



degeneracy: there exists an infinity of classical states of a different appearance, which
nevertheless have the same energy. One directly infers a problem with the finiteness
of the perturbation theory. The system will tunnel from one classical minimum to
the next and all these degenerate states would end up, having the same weight in the
ground state wavefunction: the overlap with any particular classical state would be
rigorously zero!

It is a specialty of classical nature, that the existence of such an unique global min-
imum always goes hand in hand with regularity. Stronger, classical ground states
seem always to show the property of long range order: the condensate consists of a
basic unit which repeats itself, filling up physical space. A typical example of long
range order is the periodic arrangements of atoms in crystals’.

The presence of long range order allows for a further characterization of classical
condensates in general terms. The quantity specifying the magnitude of the long
range order is the order parameter. In simple cases, it is directly clear how to define
the order parameter. For instance, in the case of crystalline order it measures to
what extent all primitive cells of the crystal are centered on points of the Bravais
lattice. However, the nature of the long range order can be much harder to recognize
and the identification of the order parameter is often a key step in the process of
understanding a problem. This will be more than once illustrated in these notes - see
the chapter on superconductivity.

A central physical property of classical condensates is the property of ‘rigidity’ (or
‘hardness’). This is nothing else than the familiar property of solid objects to respond
as a unity to external perturbations, as long as the perturbation is not too severe.
Rigidity has a fundamental reason: because the ground state corresponds with the
global minimum of the classical energy, a finite amount of energy has to be paid to
change anything inside the system. Despite its familiarity, keep in mind that it is not
obvious: ezact quantum eigenstates do not seem to carry rigidity.

The global minimum of energy occurs in the phase-space of all constituents. It is
therefore possible to consider collective motions where all constituents are brought out
of their equilibrium positions by an infinitisimal amount. These excitations are called
collective modes and it turns out that these modes dominate in many cases the low
energy end of the excitation spectrum. They correspond with minimal perturbations
of the long range order, and they are also called ‘order parameter modes’. These have
some universal properties in common, which do not depend on the specific kind of
long range order. These are tied to the symmetries in the problem.

Symmetries of central importance are continuous symmetries, like translational- and
rotational invariance. I already described how their dominance in the quantum-
mechanical sense got lost in the classical condensation process. In the end product
(the long range ordered state) very little is left of these original invariances. For
instance, in a crystal all atoms have to keep a fixed distance from their neighbours

"Glasses are not characterized by long range order. However, they do not correspond with
thermodynamic ground states either.



which rather precisely specifies their positions in space. However, there is still some-
thing left: we cannot specify the position of the whole crystal in space. More generally,
instead of the freedom to place the constitents ‘anywhere’ we are left with the freedom
to place the condensate as a whole ‘anywhere’. It appears now possible to consider
this uniform displacement as a limiting case of an order parameter mode. These order
parameter modes correspond with periodic modulations of the order parameter with
a wavelength \. Quite generally, if A — oo there is at least one mode which will
exactly correspond with the uniform displacement. Hence, if a continuous symmetry
is spontaneously broken, at least one mode ezists with a frequency (energy) tending
to zero in the long wavelength limit. In addition, the frequency of his mode will
approach this limit linearly (~ k ~ 1/X), and the lifetime of the mode will become
infinitely long in the long wavelength limit. This should already be familiar from the
behaviour of sound waves (acoustic phonons) in crystals. However, it is a very general
phenomenon which can be rigorously proven (the so-called Goldstone theorem), and
these modes are called ‘zero-modes’ or ‘Goldstone modes’. Again, awareness of the
general principle will be of much help in recognizing what is going on in less familiar
situations.

The attentive reader should now protest: Why do classical condensates exist at all?
Wasn’t it argued that the minimum of the classical energy should be unique in order
to prohibit quantum melting? We now learn that the ground state is always highly
degenerate when a continuous symmetry is into play, because it does not cost energy
to uniformly shift the order parameter. Part of the answer is straightforward: moving
the whole crystal involves a macroscopic (kilogram-like) mass and it is easy to esti-
mate that such a quantum fluctuation will take longer than the age of the universe
to have any measurable impact. This is, however, not the full answer. In contrast to
the infinite wavelength case (uniform displacement), the finite wave-length Goldstone
modes are truely internal excitations and they produce a high density of alternative
classical states at low energies. Although systems characterized by broken continu-
ous symmeries are non-degenerate, they are not so far away from being degenerate,
and they should be considered as border line cases. In fact, the existence of classical
order is decided by secondary factors like spatial dimensionality and/or magnitude
of the microscopic quantum fluctuations. This is the fundamental reason why it is so
difficult to prove the existence of classical condensation in general terms.

1.3 Touring the classical world.

The remainder of these notes is devoted to putting flesh on the general framework
introduced in the previous section. If crystalline order would have been all, this text
would have become fairly short. However, the paradigm is powerful and applies to far
more remote and exotic corners of physical reality. The strategy is to start out with
the familiar: the crystalline order as discussed in chapter IV. From this ‘home-base’,
we will climb towards the more distant summits of the classical sector.

The problem with chapter IV is that ‘classicalness’ works too well in worlds made out
of atoms. Atoms are fairly heavy objects and there is little quantum-mechanics left
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already in the ‘ultraviolet’ of this problem - this tends to obscure what is problematic
about the classical world. For this reason, we shift attention as soon as possible
to matter made out of electrons. The quantum-mechanics of individual electrons
is much harder to ‘collectivize’ in classical states and the questions appear here in
a more natural setting. In addition, electron systems also show a more interesting
spectrum of classical condensations than atoms do, not in the last place due to the
more interesting ultraviolet.

Much of the hard work is done in chapter V, dealing with electron systems domi-
nated by hard-core repulsive interactions. Here we meet magnetism. Electron spins
have the advantage that they are relatively easy to handle mathematically. For this
reason, spin problems have always played an important role in the development of
many particle physics, and they continue to do so. The starting point will be the
strong coupling limit where the electron-electron interactions dominate over the ki-
netic energy. Under certain conditions, it is possible to localize the electrons while
their spins are still free to move: the magnetic (or ‘Mott-Hubbard’) insulators. This
turns out to be an interesting excercise in projective renormalization: I will present
the rigorous way of turning electrons into spins.

This will yield the so-called Heisenberg spin problems. The classical condensates,
associated with these spin systems, are the Néel states or anti-ferromagnets - ferro-
magnets have a very special status, as will be explained. In this context, the questions
of principle are most easily adressed, and in this regard the discussion of the Néel
state is the most important part of this text.

As a next step, it will be shown how to handle classical condensation if the kinetic
energy is dominating in the ultraviolet, the so-called weak coupling limit. This is
a true miracle: despite the fact that the system of electrons is in the quantum-
limit, it still appears possible to form classical condensates, such as the spin density
waves and charge density waves. The key insight is that one no longer attempts
to ‘make’ the system classical (in the sense of (1.2)) by forming wave-packets in
real-space, but instead one constructs wave packets in momentum space, satisfying
first the kinetic energy. In fact, one can connect real space and momentum space
condensation smoothly without affecting the macroscopic properties qualitatively -
the principle of adiabatic continuity is seen at work.

Chapter VI deals with superconductivity and superfluidity. In technical respects, this
is a repetition of chapter V. Conceptually, it is a different matter. Up to spin ordering,
we tend to accept classical matter as it is: it is somehow in the line of our expectations.
Superconductivity is different. One really needs the general principles in order to
accept this phenomenon - the reason seems to be that a counter-intuitive symmetry
is broken: local gauge symmetry. The strategy in this chapter will be unconventional:
it will follow precisely the same pattern as used to explain magnetism. First the strong
coupling limit is considered where it is much easier to get a clear view on what is going
on. Subsequently, these results will be continued to weak coupling, where nature is
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in the form of the Bardeen-Cooper-Schrieffer theory.

At the very edge of the classical universe, the Fermi-liquid state is found: the col-
lective state of electrons in normal metals. As will be discussed in chapter VII, it
is even not quite clear if calling this state a classical one is still meaningful. Next
to genuine classical features (like an order parameter, a ‘classical wavefunction’, and
zero-modes), this state is also characterized by low lying excitations which are not
quite classical: the quasiparticles. Also in technical respects, it becomes manifest that
one is balancing on the outer edge of the classical world. The relatively unsophisti-
cated mathematical machinery as introduced in the introductory chapters II and III
no longer suffices, and much of chapter VII is spent on giving a first impression of
the powerful machinery of quantum field theory.
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2 The foundations: quantum-mechanics.

In this chapter some basic facts of quantum-mechanics, as needed in the remainder
of this course, will be recollected. This is mostly old news.

The main focus of this chapter will be on the two level problem. The other standard
problems of basic quantum mechanics, like the particle in the box (with and without
simple potentials) and the hydrogen atom, are well exposed in the standard textbooks.
For unknown reasons, this is usually not the case with the two level problem and I
believe it is impossible to master condensed matter physics if one does not exercise
the most minimal problem of quantum mechanics.

What you need to know at this point: the quantum aspects of at least the classical
sector of reality are made out of three basic constituents: collective modes which
are like harmonic oscillators, and particles which either behave like non-interacting
particles (mostly electrons) or like spins. The basic behaviors of these objects are the
corner stones of most quantum-mechanics books. Let us start with the very basics,
the efficient and profound way of looking at quantum-mechanics due to Dirac.

2.1 The basics.

The wave function of a particle with spin 1/2

A particle with spin-% is described by a wave function (7, s) . Here, 7'is the position
in physical space of the particle and s its spin component, defined with respect to an
arbitrary reference axis, usually called the z-axis (s = £ 1) .

Interpretation:

|4(7,5)]* dF = probability to find the particle with spin s

in an infinitesimal volume d7 around 7.

Given this probabilistic interpretation, the wave function has to be normalized ac-
cording to:

> [ wEs)lr=1 . (2.1)

-4 L
s=4 5

One can also write % (7, 3) and (7, —1) as the two components of a spinor (vector

in the internal spin-space):

W»(F,
P(F) = - (2.2)

Dirac formalism for an arbitrary quantum system

Nature consists of a linear space (Hilbert space) spanned up by vectors (‘states’)
|p > . The label ¥ might refer to any meaningful property of the system, like its
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spatial /temporal position, its internal spin state, its energy, etcetera. |1 > is called
ket. To every [t > a bra < 1| is associated (in fact, a vector in the dual Hilbert
space). It is then possible to form the scalar product of two states |, > and |y, >:
< itpy >, a “bra-cket”. This can also be considered as a projection of [, > on
|11 >, or as the overlap of |1, > and |¢p; > .

Property:

< |ty >=<hyth >* . (2.3)
In addition, brackets have to be normalized

<Pl >=1 . (2.4)

spin—% particle in Dirac notation

|7, s > is the state describing a particle at position 7 in physical space with spin s.
The scalar product of two states of this type is

<7'S|Fs >=6(F— ") Oger - (2.5)

(2.5) shows that the vectors {|7, s >} form an orthonormalsystem. It is also complete,
an arbitrary state ¢ > describing a spin—% particle can be written as a linear com-
bination of states |7, s > ; the expansion coeflicients are the projections < 7, sji) > .
Hence:

I >= Z/df’ 178 >< 7, sl > . (2.6)
The wave function, as introduced under (i), has the meaning
<7slp> = P(Fs) ,
(2.7)
<pl|r,s > = YT, s)

< 7, 5|t > is called the wavefunction of the particle in the position representation.

— exercise 2.1

(1.2) can also be written in the mixed form
Y(7) =9, P >+ -Pl-E > - (2.8)

with different ways of writing the kets of the spin-1/2:

+> = (é) ,
1)
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Representation free notation

|4 > has the advantage that one does not have to specify what physical question one
asks from the system - for instance, |1/ > has the same information content as ¥(7, s)
if one asks for position information. If one wants to know about momentum, one can
use |1 > as well. |p’, s > is the state of a particle with momentum 7 and spin s , and

-~

([, s) =<7,slp > (2.10)
is the wavefunction in the momentum representation.
=—> exercise 2.2

Complete orthonormal systems

Since (2.6) is true for all [1) > , we might as well define the identity operator
> [ s> <= 1 (2.11)

obviously so, because the system {|7, s >} is complete. There are many other com-
plete systems, like {|7,s >} . Any quantum-mechanical system is characterized by
a complete orthonormal system,

& j [e=2=r05 ; (2.12)
and

dli> <i=1. (2.13)

An arbitrary state |1 > can therefore be written as

> => |i> <ilp> :Z p(i)| 1 > (2.14)

)

the expansion of 1 in terms of states |i > . If ¢ refers to a continuous variable, one
should use a Dirac delta-function on the right hand side of ref. (2.12) instead of the
Kronecker delta [compare with (2.5)].

Operators

A is an operator with matrixelements A;; =< i|Alj > .
The hermitian conjugate A" of A is defined by

(Af)ij =A% . (2.15)
A is hermitian if A=Al ; (2.16)
A is unitary if AAT =1 . (2.17)
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— exercise 2.3

In quantum-mechanics, A is a linear operator in Hilbert space, and |¢ > is a state
in the orthonormal system {|j >} . Al|i > is a different state, which is sometimes
written as |A7 > (with bra < Ai]) . A might be expanded as:

Ali> =3 17> <jldli> =) 4li> . (2.18)
j j
Since
< jlAli >=< jlAi >=< Ai]j >* (2.19)
and
< jlAli >=<i|Alj >*=< i|Alj >*=< Alj[i > (2.20)

it follows that A acting on a ket is equivalent to A acting on a bra: < j|4i >=<
Aljli > .

Observables

Every measurable quantity (observable) corresponds with a hermitian operator acting

in Hilbert space. If A is hermitian, the eigenvalues A = 04 , @3 ,- - - as determined by
Al >= Ay > (2.21)

are real quantities, with a spectrum which can be either discrete or continuous. This
equation also defines the eigenstates |a; > , |ag > -+, such that A|a; >= a;jay >.

= exercise 2.4

«; are the only possible outcomes for the measurement of the observable A. In a
simultaneous measurement of two physical quantities A and B, the outcomes for
both quantities can only be completely determined if the operators commute,

[A,B]= AB—-BA=0 . (2.22)

The Hamiltonian

The Hamiltonian H is the operator for the total energy. Its eigenstates are determined
by (see (2.21) )

Hip> =FE@p> (2.23)

and these play a special role: Eq. (2.23) is the time independent Schrédinger equation,
the object which keeps nature in a good shape - for some reason time and/or energy
are very important quantities. We define its eigenvalues and eigenstates by

E:€1,82,"' > (224)
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> =gy >, Jeg >, . (2.25)

This eigenvalue-spectrum can of course be continuous.
If we start out at t = 0 with

>0 =)e > (2.26)

it follows from the time-dependent Schriodinger equation

9
ik ﬁ>:Hw>, (2.27)
that
>, =e it g > (2.28)

—= exercise 2.5

To solve the Schrodinger-equation (2.23) it can be convenient to execute the calcula-
tions in a specific representation, for instance the position representation,

Ho(r)=E(r) ,

where we recognize the Schrodinger equation as presented in introductory textbooks.
Keep in mind that this is in fact a special case of the more general expression (2.23).

= exercise 2.6

Examples of single particle Hamiltonians

Quantum-mechanics started out with the exploration of one particle problems, mostly
because these problems can be exactly solved in a variety of cases. In a strict sense,
problems in nature are never precisely of a single particle nature. Fortunately, it
appears that in a number of cases effective single particle problems can be extracted
from the full many-particle reality, as you will frequently encounter in this lecture
series.

The Hamiltonian of an isolated particle moving in an external, time-independent
potential V(7) is,

=2
p
H=—+V 2.29
2m V), ( )
where
7 E (pz » Py »pz) = (p1 » P2 ;pB) momentum operator ,
7 = (x,y,2) =(x1 ,%2,z3) position operator ,
p? = pP=pl+pl+pl=pi+ps+p; . (2.30)
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Notice the two ways of labeling physical space. In position representation, the mo-
mentum operator becomes,

p; = —ih a% ’ .7 = 1:2:3 (231)
7

The single particle Hamiltonian becomes

h2
H=—s— A+V() (2.32)
0 0 0 0?
J

Some examples of textbook potentials:

V() = 0 particle in the vacuum
2
V(r) = == electron in the electric field of a point charge
r
!
V(r) = 5 mwir? 3-dimensional harmonic oscillator

with characteristic frequency wy

V() = 0 r<rg particle in a spherical
Ty oo r>n box with radius
0 |z| > 20 electron in the neighborhood of an attractive
V(F) = interface (width 2z , depth —V4),

~Vo |2] <2 e.g., in between two semiconductors

The last three cases are examples of model potentials. Even on the single particle
level it is rarely possible to obtain closed, analytic solutions for realistic potentials
which are usually rather complicated. However, in the absence of disorder and chaotic
behavior, it appears possible nowadays to obtain numerical solutions to any desired
accuracy for every V(7) one can imagine. This will be further discussed in the chapter
on band structure.

= exercise 2.7

The two level problem.

Another very useful toy problem is the so-called two level problem. In most elemen-
tary textbooks it is rather underexposed (with the notable exception of Feynman’s
‘lectures in physics’), despite the fact that it is at the core of a large variety of
physically interesting problems.

We assume that the world consists of two states, |1 > and |2 >. In the spirit of
Dirac, |1 > and |2 > could be anything (which makes this toy so widely applicable)
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but to help the imagination we consider it here to be a simplified version of the H"
molecule: |1 > labels the atomic s-state of the electron centered on one proton and
|2 > denotes the s-state around the other proton. It is assumed that these states
form a small, but nevertheless complete orthonormal set,

1><1]+]2><2|=1 (2.34)
Since this set is complete, we can project the Hamiltonian to find, in full generality,

H=|1>e <1[+2>e<2/+[1>t<2)+2>1"<1], (2.35)
with matrix elements

g1 = <1lH]1> ,
g, = <2H|2> ,
t = <1H2> ,
t = <2/H]1> (2.36)

This is the general structure of the two level problem. Applied to the H, molecule,
we imagine that we start out assuming that both protons are on different sides of
the universe so that their electronic wavefunctions do not overlap: t is zero. The
atomic states are of course degenerate (in the absence of electric fields etcetera) such
that €, = €, = €. We move the two protons closer together so that the atomic
wavefunctions begin to overlap: an electron can tunnel from one proton to the other
and this is parametrized by a finite ‘tunneling amplitude’, or ‘hopping’, or ‘transfer
matrix element’ ¢t. Of course, doing so the states |1 > and |2 > should be in principle
be non-orthogonal (< 1|2 ># 0) but we assume that in the process the states are
constantly re-orthogonalized - this will only change the values of € and ¢ and these
we do not want to calculate anyhow.

If & = €, = £ and choosing for convenience ¢ to be real, (2.35) the eigenvalues are
determined from
w—E€ t

L |=0 (2.37)

with solutions wy = € £ ¢ and the eigenvectors are

|-> = —=(1>-2>)

Sl

2
1
V2
and |+ > forms of course again a complete orthonormal system. The Hamiltonian

has a diagonal form in this new basis,

+> = (1 > +]2 >) (2.38)

H=|->E-t)<—|+[+>E+t)<+|, (2.39)

Hence, assuming that ¢ > 0, we find that the tunneling has lowered the energy of the
|~ > state and raised the energy of the [+ > state. This can be summarized in a
picture (figure 2.1).
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Figure 2.1: Level diagram for the two level problem. The dashed lines indicate how
the "hybridized’ states |+ > evolve from the ’pure’ states |1,2 >.

One recognizes one of the laws of quantum mechanics. By allowing the electron to
hop from one proton to the other it can explore a larger region of space and thereby
increase its position uncertainty: the box becomes larger and the electron can reduce
its average momentum and thereby reduce its kinetic energy. Hence, the energy of
the lowest lying state (|— >) goes down. It actually means that if we prepare the Hy
system in its electronic ground state (|— > occupied) it can gain energy by letting
the protons come closer together, forming a molecule! This is quite a realistic picture
of the glue which keeps molecules together: in chemistry it is called covalent binding.
For this reason, the state |- > is called a 'bonding’ state. It is less obvious that
this bonding state has a ’partner’ (|[+ >) which looks quite similar except that the
signs are reversed - starting out with plane waves, this kind of states is completely
invisible. States of this nature are called ’anti-bonding’: if one puts the electron in
the |+ > state by exciting the H;” molecule with a laser pulse or so, the protons have
a good reason to unbind. Finally, it sometimes happens that eigenstates do not know
about quantities like ¢, and these states are called 'non-bonding’, for obvious reasons.

Next to explaining lots of molecules (in chemistry, the generalization of this toy
problem is called the ‘linear combination of atomic orbitals’ method), its extensions
play an important role in solid state physics as well, where it is called the ‘tight-
binding method’ which will be explained in further detail in chapter 3. For further
two-level based entertainment I refer to the book by Feynman.

— exercise 2.8

2.2 Harmonic oscillators.

Harmonic oscillators have a very special status in physics. For whatsoever reason,
the force-mediating 'fields’ both in the high energy realms, as in the macroscopic con-
densed state (where they correspond with the ’collective modes’), have a mathemati-
cal structure which can be expressed in terms of an ensemble of harmonic oscillators.
Here the single harmonic oscillator is discussed. It is a first example of a quantum
problem where the notion of a single ’particle’ (better: ’quantum of something’) is
rather meaningless - only the relationships between states with different numbers of
quanta really matter. Accordingly, it can also be considered as a first glimpse on the
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second quantization formalism. It is about operators creating and annihilating stuft,
where all the work is done by algebraic relations (commutators).

The Schrédinger equation for a particle with mass m moving in a harmonic oscillator
potential is

———+ —mw?z? | P(z) = E.p(z) . (2.40)

This equation can be viewed as a differential equation which can be solved in terms

of Hermite polynomials. Doing so, one finds the energy eigenvalues
1
E, = (n+ i)hw . (2.41)

If the particle is excited into the n-th quantum state, it is indicated with the ket |n >.
The eigenfunction in terms of the Hermite polynomials, 1,(z), is the projection of
|n > on the position coordinate ¢, (z) =< z|n >.

This problem might as well be solved by manipulating operators. This is much more
efficient, and yields a deeper insight in the nature of the problem. First, rescale the
operators

= vmhwp ,
= WJh/mwz (2.42)
and the Hamiltonian becomes
il
H, = 5hw(;ﬁ? +1%) . (2.43)
The key idea is to introduce the operators,
b ! (Z + 1p)
= —(T+1 :
/2 p
l o
— (=
\/5( p)
These operators obey an interesting algebra, the so-called boson-Heisenberg algebra

[0,0) = 0 B0l = 0 [b,bf] = 1 . (2.45)

ot = (2.44)

— exercise 2.9

In terms of b en b' the Hamiltonian becomes

1
H = hw(bfb+§) : (2.46)

Diagonalization of the Hamiltonian is equivalent to finding the eigenstates of the
'bilinear’ operator b'b,

bibln > = Aln> = nn> . (2.47)
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and we recognize from (2.41) that 7 measures actually the occupation number n.
Next to 7 measuring the number of quanta, it turns out that b! creates one quantum
of oscillation while b annihilates a quantum. We find this out by doing algebraic ma-
nipulations using the Heisenberg algebra, keeping track of the action of the operators
in Hilbert space.

Let us consider what happens when b and b act separately on the state space |n >.
Especially

(b'0) bl > = o (1+b70) [n>
= (n4+Ddln> . (2.48)

is revealing. We only used (2.44) and the algebra (2.45) to find out that bfjn > is
proportional to |n + 1 >,

bin >=epn+1> . (2.49)

with an unknown constant of proportionality e,. We find that b7 has the effect of
creating a quantum of energy - if we let b act on |n > we end up in a state |[n+1 > and
using (2.46,2.47) we find that the energy of the system has increased by an amount
hw. Repeating this calculation for b, it is found that b has precisely the opposite
effect of annihilating quanta, bln >~ |n — 1 >.

The constant of proportionality has still to be determined. On the one hand,

<n|bbtn > = e, <nlbln+1>=e, <n+1|bl|jn >*=
= le ? <n+1n+1>, (2.50)

and on the other hand
< nbbf|n >=<n|l +bbjn >=n+1 . (2.51)

and it follows that e, = v/n + 1 (e, can be choosen to be real). Repeating this for b
we arrive at the final result,

biin> = Vont+lin+1>
bln > = nln-1> . (2.52)

These simple manipulations teach us two important lessons: (i) a formal lesson, it
appears possible to calculate entirely in terms of the operators themselves. We can
leave wavefunctions implicit and all we need is an abstract conception of Hilbert
space. All the hard work is done by algebraic manipulation in the space of operators,
and this becomes quantum mechanics because the algebra has a non-commutative
(non-abelian) structure. (ii) A lesson about physics. We find, buried in this simple
potential problem, a new notion of particle. One can as well say that b' creates a
particle carrying an energy hw while b annihilates it. As we will later find, the com-
mutation relations (2.45) imply that these particles are bosons. This is actually the
sense of the 'particle-ness’ of the particles carrying the forces, like the photons, glu-
ons and vector bosons. In quantum-field theory, the harmonic oscillator nature of the
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fundamental fields is a matter of hypothesis. In condensed matter, the precise equiv-
alents of these field-particles show up as well, where they carry names like phonons,
magnons, plasmons, etcetera all of which will be encountered in these lectures. There
is one big difference with the fundamental fields: in the condensed state, they are the
quantized version of the collective modes which are themselves implied by the rigid
nature of the classically ordered state.

2.3 Many particles: quantum statistics.

The formalism as explained up to now is not sufficient since nature never consists of
one particle in isolation. Dealing with more particles, one needs additional axioms
and these are the axioms of quantum statistics. In three-dimensional space the basic
statement is: in a system of indistinguishable particles, the states of the many-
particle system have to be either symmetric under exchange of two single particle
quantumnumbers, @, Q" [Q(1)Q'(2).... > = |Q'(1)Q(2).... >, or antisymmetric:
QA (2).... > = —|Q(1)Q(2).... >. Here 1,2,--- labels the particles. If the
wavefunction is symmetric the particles are called bosons, if it is antisymmetric the
particles are called fermions.

— exercise 2.10

These statements were originally introduced by Pauli as mere physical hypothesis. It
turns out that one can actually prove mathematically (using the topology of world-
lines in the Feynman path integral formalism) that these two are the only possibilities
in the three dimensional world. This is different in lower dimensions. Assuming that
the particles have a hard-core, so that they cannot pass each other, it can be shown
that statistics looses its meaning in one space dimension, while in two dimensions
statistics becomes arbitrary in the sense that nature could in principle interpolate
between fermion and boson statistics: the subject of anyons.

On a fundamental level, the particles carrying a mass are always fermions, while the
force mediating fields are described by bosons. In the macroscopic realm this is still
true, except that one can now also find bosonic, massive particles which are bound
states of an even number of fermions, like for instance *He. In addition, the spin-
statistics theorems of relativistic quantum-mechanics tell that fermions carry half-
integer spin while bosons carry integer spin. In so far particles play a role in condensed
matter physics, these are in most cases either s = 1/2 electrons or 'massless’ bosons,
like the phonons etcetera.

Even if the fermions or bosons are non-interacting, the symmetry properties of the
many particle wavefunction give rise to special collective behaviors: the particles do
not act any longer as if they are independent of each other, in the way they are in
a classical ideal gas. One could also say that the behaviors of individual particles
become correlated with that of all other particles in a manner which is beyond classical
intuition. Massive, non-interacting bosons are subject to Bose-Einstein condensation:
the ground state of the N-particle system consists of a N-fold occupied lowest lying
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single-particle eigenstate. Fermions do precisely the opposite: every single-particle
eigenstate can be at most occupied by one fermion, the Pauli exclusion principle.
One of the consequences is the different behavior at finite temperatures,

: 1
ns() = JEmy
, 1
nr() = a1 (2.53)

the Bose and Fermi factors, expressing how excited single particle states (e;) get
occupied at finite temperature (8 = 1/kgT), differently for bosons and fermions.
In the case of the Fermi systems, the thermodynamic potential 4 becomes at zero
temperature equal to the Fermi-energy Ep, for non-interacting problems given by the
sum of the energies of the N lowest lying single particle states. For non-interacting
bosons, p becomes N times the energy of the lowest lying single particle state.

Slater determinants

Hy is the the Hilbert space of all possible N particle wave functions. This contains
a subspace H# spanned by all antisymmetric solutions, corresponding with indis-
tinguishable fermions. One first considers the case that only one particle is present
(N = 1). This defines a complete and orthonormal basis |k; > - notice that this
basis is in principle arbitrary, it does not have to be the one which diagonalizes the
single particle Hamiltonian. In many cases the choice of such a diagonal basis is even
inconvenient. The full Hilbert space Hy of the N-particle problem is spanned by the
set of all products of IV single particle states,

|k1(1) > means: particle 1 occupies single particle state |k; >, etcetera. Exchanging
for instance particle 1 and 3,

k1 (3)ka(2)ka(1) -+ kn(N) >,

and (2.54) is obviously not anti-symmetric. Notice that we could as well have per-
muted the quantum numbers instead of the particle labels. Anti-symmetry can be
restored by taking a special linear combination of product states. An arbitrary per-
mutation of all particles is symbolically written as P,

Pn labels the particle which ends up after all the exchanges in the state, initially
occupied by particle n. Every ordering of particles can be constructed from a series
of pair permutations. Although there are different ways of arriving at the same overall
permutation using pair permutations, the number of pair permutations is even or odd
regardless the sequence in which the pair permutations are carried out. This makes it
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possible to introduce the number np = +1, the ‘parity’ of the permutation: np = +1
if the number of permutation is even, and np = —1 if it is odd.

= exercise 2.11

The Pauli-Principe requires the wavefunction to change sign under the exchange of
two unspecified fermions. In terms of np,

PIU(L,2,--,N) > = np|¥(1,2,---, N) > . (2.56)

The linear combinations of product states which fulfills this requirement (3 p sums
over all permutations),

1
kikoks - ky > = — ki (P)ko(P2)-- - kn(PN) >
| 1H/2R~3 N \/m;npl 1( )2( ) N( )
where we defined the antisymmetrization operator,

1
A = A ;npp S (2.58)

which projects an arbitrary state of Hy into the antisymmetric subspace Hi.

— exercise 2.12

These expressions are not easy to visualize. The following form is much more conve-
nient,

k(1) > [ka(2) > oo |k () >
|k1k2k3”_kN>:\/% |k2(:1)> |k2(?)> ...... |k2(]:7)> o
kn(1) > [kn(2) > coeeee lkn(N) >

The so-called Slater determinants which span the antisymmetrical part of the N
particle Hilbert space Hiy. The determinant form is very convenient. Exchange
of rows (or columns) in a determinant gives rise to a sign changes: for instance,

|kiky - ky > = — |koky---ky >, and we recognize (2.56). In addition,
|k1kokoksks---ky > = 0, two fermions cannot occupy the same single particle
state.

There is one complication. If we do not take precautions, the basis |k1ky---ky >
is overcomplete, because the same state is obtained, except for a minus sign, if two
particles are exchanged. One has to add an additional constraint to prevent this
double counting. The remedy is to choose an order for the quantum numbers &, such
that either £ < K, or k > k' - for instance, if the states k are eigenstates of the single
particle Hamiltonian, the natural ordering is according to increasing single particle
energy. By allowing only the subset of states

{lk1koks---ky >} under the condition that k; < ky <--- <ky (2.60)
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overcompleteness is avoided and (2.60) is a complete and orthonormal basis for the
many-fermion Hilbert space Hj.

— exercise 2.13

It is special to the problem of non-interacting particles that all N-particle eigenstates
can be directly derived from the eigenstates of the one particle problem by simply
using the single particle quantum numbers for the k;’s in (2.60). At the moment that
particles start interacting with each other, the N-particle eigenstates can no longer
be written in terms of single Slater determinants, because interactions will give rise
to non-zero matrix elements between different Slater determinants which cannot be
transformed away by transforming single particle states. Instead, one has to solve
the problem in the full Hj space and the eigenstates will have the form,

U= Y ChpgepnlBike by > (2.61)

k1 <ka<--<kn

In the chemistry literature this is called ‘configuration interaction’ (every Slater de-
terminant is a ‘configuration’ of electrons), while physicist call it ‘the many-body
problem’. As will be further illustrated, this Hilbert space has the nasty property of
having an enormous size, even for the simplest problems. 'Exact’ solutions (or even
accurate approximate solutions) are out of reach for physically interesting systems
even if one uses the fastest computers. Nevertheless, something can be said about the
qualitative features of this problem and this is the main theme of this lecture series.

Two levels and two electrons: non-interacting Hy.

To obtain some intuition regarding Slater determinants and the many-body Hilbert
space, it is instructive to consider the two (non-interacting) fermion variant of the
two level problem discussed at the end of section 2.1. This could be a caricature
of the neutral hydrogen molecule (H,) - it is actually a rather poor model because
interaction effects are quite important in this molecule. A much better toy-model for
H, will be presented in chapter V.

Including spin, the single particle basis can be choosen to be the unhybridized site
basis {|ic >},i=1,2;0 =1, ] (2.34). We define ({7,7'}e{1,2})

j o= |ioi'o’ >= VLA [i(1) > |o(1) > [¢(2) > |0'(2) > (2.62)
and the complete two particle basis is, including the double counting constraint (2.60),

1>, = 172>, 2>=1271|>, [3>=[11T1]>

4> = 272>, [5>=1721>, [6>=1]2]> (2.63)
The two particle Hilbert space is 6-dimensional, still of the same order as the 4-
dimensional one particle space - this looks already quite different when we attach one

more site and one more electron (see chapter V). By writing these states explicitely,
and using the single particle Hamiltonian (2.35,2.36, €4 = €3 = ¢, t real), one finds
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that the Hamiltonian becomes in two particle Hilbert space,

6
H = 2) |j> <jl +
j=1

(2.64)

t([1> <32+ [1> <4fa + (2> <3|z + 2> <4|s + he)

h.c. means hermitian conjugate. The Hamiltonian is diagonalized by,

la >y = %(—|1 >y =2 >9 +[3 >2 +[|4 >3)

by = %(u Sy 2 > H[3 > +]4 >2)

e >y = %(u Sy —]2 >2)

4> = —=(13>s —}4 >) (2.65)

N

and the diagonalized Hamiltonian becomes,

H = 2(5> <5)p + (6> <62 + |c> <cp + |[d> <d2) +
la >3 (26 —2t) <alp + [b>2 (26 4+2t) < b, (2.66)

Hence, we find four non-bonding two particle states (|5 >q, |6 >3, |c >2,|d >3), one
bonding state (|a >3), yielding twice as much kinetic energy as the single-particle
bonding state, and one antibonding state (|b >s).

— exercise 2.14

Of course, we could have saved the effort of diagonalizing in the ‘big’ two particle
Hilbert space: this is a non-interacting problem, and in this case we can profit fully
from the solution of the one particle problem. Spanning the two-particle Hilbert
space using the one particle eigenstates (2.38) instead, the problem is directly solved.
We leave it to the reader to show that

’—T—l> = |CL>2

[+ T+1> = [b>

|- 1T+1> = %(|0>2+|d>2)

1= > = %(—IC>2+Id>z)

+1T—=1T> = =[5>

Hl=1> = —[6> (2.67)

while from the left hand side of (2.67) and the one particle result (2.39) the eigenvalues
of the two-particle problem can be directly inferred.

— exercise 2.15

Writing the Slater determinants of the bonding state explicitely in product wave

27



functions,

T >11@> 11> 111 >)@)
2
The ‘orbital’ part is symmetric and indicates that both particles are found in exactly
the same region in space. The total wavefunction is kept antisymmetric by the spin
part, which is recognized to be a two particle singlet state (see also section 2.5). This
is quite different for the non-bonding combination characterized by parallel spin

[+ 1T+ 1>=[+(1) > [+(2) >

+1-1>= —%(11(1) > [2(2) > —12) > 2() )| T (M) > [1(2) > (2:69)

Now the spin part is symmetric, corresponding with a two particle triplet. This
forces the orbital part to be antisymmetric. As a consequence, the particles avoid
each other: if particle 1 is on atom 1, particle 2 is always on atom 2 and vice versa.
This is a simple example of the ‘exchange hole’: fermions with the same spin tend to
avoid each other, regardless the interactions. This is a very general principle which
has a variety of physical ramifications. In the present example, it forbids the electrons
to hop (this triplet is quite literally non-bonding’) and we will see in chapter 4 that
precisely this phenomenon gives rise to the kinetic exchange interactions in magnetic
insulators. At the opposite end one encounters the Hund’s rule exchange known
from atomic physics which is also the driving force behind itinerant magnetism: the
exchange hole keeps the electrons from approaching each other to closely and this
yields energy because they repell each other less, on average.

2.4 Second quantization.

It should be clear from the previous section that manipulations involving wave-
functions of the Slater determinant type tend to be rather tedious. In the evaluation
of matrix elements, etcetera, one has to work him/herself through complicated sums,
finding out at the end that the answers are simple, suggesting the existence of a more
efficient algorithm. Even worse, one would like to write down expressions for the
Hamiltonian and other properties, given that N particles are around. If one tries
to do this in the ‘first quantized’ formalism (using operators like |i >n< j|n, |t >n
is the N particle Hilbert space), one finds out that (i) for every N the Hamiltonian
looks different (see the ’H,’ molecule) and (ii) this expression would become very
lengthy indeed for any truly interesting problem, because of the gigantic size of the
Hilbert space.

The way out is second quantization. This follows the same general pattern as was
exposed in section (2.2) (harmonic oscillator). One only needs an abstract notion
of the Hilbert space, and all the hard work is done in terms of operators. The
physics is encoded in the non-abelian structure of the algebra. This includes the
statistics; for bosons in general one recovers the algebra (2.45)) while the result for
fermions is similar, except that the operators anti-commute. In first instance, second
quantization can be considered as a convenience. However, one can wonder if there
are deeper meanings behind this formalism. Certain tricks have been invented using
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second quantization, which solve the problem in a couple of lines. If one tries to do
the same calculation using Slater determinants, one would get entangled in algebraic
manipulations for years and most likely one would loose track, even knowing the
answer. A good example is the Bogoliubov transformation, explained at the end
of this section, which is the key mathematical operation needed in both the theory
of superconductivity (chapter VI) and the semiclassical theory of spin condensation
(chapter V).

The Fockspace H

Second quantization is about operators which act on yet another Hilbert space: the
Fockspace H, defined as the direct sum of the N particle Hilbert spaces Hy of the
previous section, Hy, Hy, Hy, - -,

H, has a special status, it is the Hilbert space of the ‘problem’ with no particles.
This is spanned by one normalized state: |0 >, describing nothingness, called the
’bare vacuum’ in the jargon of physics.

The antisymmetric Fockspace H* is constructed from the anti-symmetric subspaces
H% (2.70):

H* = Hy ®H, ©H} © --- @Hy & - . (2.71)

Antisymmetrization is of course irrelevant for the bare vacuum and the one particle
sector H,. Because of (2.61),

{|O>,V€1 >,|k}1k52 >,"',|k)1k‘2"'l€N >y, Withk’1<k}2<"'}

The completeness relation in Fock space is,

N=0k1<ko<-<kn

Creation and annihilation operators.

Creation and annihilation operators are operators which act on Fock space with the
effect to move the system from the N particle sector to the N + 1 particle sector
(creation operator), or from the N to N — 1 sector (annihilation operator). The
creation operator a;rc is defined by its action on Fock space. Starting with the bare
vacuum,

all0> = k> (2.73)

aL creates one particle in state k. If more than one particle is around, one has to

worry about the ordering (2.60). For fermions,

; |kky > for k <k,
allki > = (2.74)
—|k1k} > for ky < k
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or for arbitrary particle number N

kkiky - ky >
allkrky - by > = | (2.75)
(=1)E |ky - kikkiyy - ky >

The rule is to place the quantum number of the newly created particle to the far left
and then shift the quantum number to its proper locus in the ordered sequence of
quantum numbers, multiplying the wave function with —1 every time one passes a
single particle quantum number of the N particle state (the fermion sign). In the
case of fermions, one cannot create a particle in a state which is already occupied,

allkiky - k- ky> =0 (2.76)

Applying (2.74,2.75) repeatedly, one can construct any state in the antisymmetric
Fock space starting from the bare vacuum,

\k1ky - ky > = aLla,tz---aLN|0> : (2.77)

The annthilation operator ay is defined in a similar way,

aGlo> =0 (2.78)
alk> = 0> | (2.79)
ak|]€1]{,’2"'k']v> =0 fork#kl,k;ﬁl@,---,k;ﬁk,\r , (280)

while for £ = k;q
ak|l§1---kN> = (—-1)1 ak|kk1---kiki+2---k1v> i
= (=1)ky---kikiyg - kv > . (2.81)
summarized in the expression,

N-1
ak|k1-~-kN R — Z(—l)Z 6k,ki+1|k1"’kiki+2"'kN > . (282)

i=0

for N = 0 the right hand side of (2.82) is of course zero. In the notation we have
already anticipated on the fact that a is the hermitian conjugate of af.

— exercise 2.16

By using these definitions it is easily checked that the fermion creation and annihila-
tion operators obey the so-called fermion Heisenberg algebra

{(J,ITC,(LZ} =0 5 {ak,ag} =0 > {ak,az} &5 (Skg . (283)

which is anti-commuting: for any pair of operators A and B, {A, B} = AB+BA. In
this way, the antisymmetry of the many particle wave functions gets coded into the
algebra. The derivation of the second quantization formalism for bosons (symmetric
wave functions) goes along similar lines, except that one does not have to worry about
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the sign factors (—1)". One finds that the boson creation (b}) and annihilation (b,)
operators satisfy the commutation relations (compare with (2.45) ),

[bl,b}] =0,  [wbd =0, [b6, 6] = Ske (2.84)

The algebraic relations (2.83) and (2.84) will turn out to be central parts of the
machinery of many-body quantum-mechanics.

= exercise 2.17

Operators in second quantization.

Because any state in Fock space can be constructed using creation operators, it is
also possible to re-express any operator entirely in terms of creation and annihilation
operators. This yields particularly convenient forms. Next to many-particle wave
functions, one also deals with many-particle operators in many-body physics, of the
general form

N

B= > B@gn-) . (2.85)
i<j<n.=1

expressing for instance the interactions between particles 4, j,n, - --. In practice, one

encounters most frequently one particle operators (only 4 in the sum; kinetic energy,
external potentials, current- and density operators) or two particle operators (3, j;
pair interactions).

Let us consider what happens when B acts on a Slater determinant. Using the
antisymmetrization operator A (2.58) we can write
Blkiky---ky > = BVN' Ak (Dko(2) - kn(N) >
= VNVAB|E(1)ky(2) - kn(N) > . (2.86)
We have assumed that B commutes with A - this condition is in practice always

satisfied. The effect of B on the simple product state is easy to obtain. Use the
completeness relation in the (unsymmetrized) subspace Hy,

Blkiky - ky >=VNIA 37 |6a(1)-- Iy (N) > B({1}; {k}) (2.87)

introducing the shorthand,

B{I};{k}) =< (1) - - Ly (N)|B|kr (1) - - by (N) > (2.88)
Subsequently,
BUAE) = D <A bNBG e (1) (N >

= > H*ée,,,k,, < Li(0)8;(3)n(n) - - 1B, gy ) ki) () kn(n) - - - >

i<j<n-»=1p=1

N N %
Z H Ot , B(lilily - - -5 kikjky - - -)

i<j<n---=1p=1
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where * means: exclude 4, j,n, - - in taking the product. Because of the Kronecker
delta’s the sums over the £’s can be executed,

N
Blkiky - ky > = S Y Bty kikikn ) X

i< <=1 £l

|k1)"')Ei)"'7£j)“',£na'”,kN>

N
- S S B(lilily- s kikika ) %

i<j<n- =1 ei,ejyen,"'
aziazj g ag Rk, kv > (2.90)

The work has been done. We can rewrite this result in terms of summations over
quantum numbers. For an N; point interaction, we can make the replacement

N
1
5T = mZZ 3w (2.91)
i<j<ne=1 © 0 AL

This is possible, because interchanging two creation operators in (2.90) yields the
same sign as interchanging two annihilation operators. The factor 1/N;! now takes
care of the double counting. We can forget about the constraints on the summations,
because a,a, = 0. We rename [;l;l, - -+ — pipaps - - - Since the annihilation operators
give only a non-zero result if the states k;, k; - - - are occupied, we can as well sum over
all quantum-numbers instead (g1, ¢ - - ). Doing this, we obtain the following second
quantized expression for B:

1
i Z B(pipz - 5¢1¢2 - -)a;f,la;f)2 g, Gy . (2.92)

T P1L,P2q1,920t

B =

This expression is valid in all sectors of Fock space.

The single particle problem.

A one particle operator

N

Vi = > V() (2.93)

=1

can be written according to (2.92)

Vi = Y Vualag (2.94)
Vog = <p)[V(D]a(1)> . (2.95)

For instance, the standard one particle problem (2.32) has the second quantized form

2

M=ol ~ o A+ VPla)aa, (2.96)

p,q
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the states |p) and |q) are arbitrary, as long as they form a complete and orthonormal
one particle basis.

— exercise 2.18

The number operator
ﬁk = a};ak . (297)

has a special status. 7i; is the observable which measures if the single particle state
|k > (not necessarily an eigenstate of the single particle problem) is occupied or not
in a many-particle wave function. It is easily checked that every Slater determinant
|k1ks - - - ky > corresponds with an eigenvector of 7; with eigenvalue ny, = 0 or
n, = 1:

0 ifknotin {ki, ke, -, kn}

’I’Lk|k}1]€2-..kN> = { |k1,]{;2,---,kN> ika{/{,'l,ktz,--',k'N} (298)

and one calls the eigenvalues n; the occupation numbers.
—> exercise 2.19

These occupation numbers also suggest an alternative representation. Instead of
indexing the state explicitely with the occupied k’s, one lists all possible £’s and
indicates instead if they are occupied or not with the ny’s,

|kiko - ky > <— lo,0,---,0,1,0,---,0,1,0,---,0,1,0--- > (2.99)
T T T
position k; position k3  position ky

or alternatively

Ny, g, ng, - > = (aJ{)m (ag)nz (a;f;)n3 o> =11 (a};)nk 0> .(2.100)

Diagonalizing single particle problems.

In a couple of cases it makes sense to do perturbation theory in the strength of the
interactions. The diagonalized single particle problem is considered to be the zeroth
order, and the effects of the interactions can be treated with perturbation theory (e.g.
the weak coupling theories in chapter V and VI, and the Fermi-liquid of chapter VII).
In these cases it make sense to work in the single particle basis which diagonalizes the
single particle Hamiltonian - knowing about the occupation numbers, one can directly
read off the single particle energies. In terms of the eigenvalues €, and eigenstates
|k > of the single particle Hamiltonian, the diagonalized problem is

H=3 exfis (2.101)
k
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One could of course diagonalize the Hamiltonian first and then define the creation-
and annihilation operators associated with the eigenstates. It is, however, also possi-
ble to diagonalize the problem directly in terms of the operators. The single particle
Hamiltonian has the form

H o= >3 hyala . (2.102)
p T

It is now possible to transform the operators themselves. U is an unitary matrix

ot =0,

= > Uty e = Y Upal = Za;',ng : (2.103)
) P )
with the inverse
Gig) = Zngck 3 a,;f, = Z(U;k) ¢ = ZCLUM, . (2.104)
k k k

This transformation respects the fermion anticommutation relations
(e} =0, Hamed =0, {oncl} = e . (2.105)

which should be the case because one cannot change the statistics of the particles on
the single particle level,

= exercise 2.20

Using (2.104), the Hamiltonian might as well be written as,

H =% 3N cUphyUlce
p T k £
= 5 (ST bt cer

ke \p 7
k

In the third line, the diagonal form is imposed and one recognizes the eigenvalue
problem

SN UiphmUly = hie = breer (2.107)
p T

the same problem as we would have to solve in first quantization.
— exercise 2.21
= exercise 2.22

The Bogoliubov transformation.

Up to this point, second quantization does not yield any advantage over the familiar
diagonalization carried out in first quantization. It turns out, however, that the
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second quantization formalization allows for a generalization of the notion of ‘the
single particle problem’. Any Hamiltonian which can be written in terms of products
of two creation operators, two annihilation operators and/or one creation and one
annihilation operator,

H= > [Aprapa,a £ ZBPTa;aT + Arpa:ﬁa;f,] (2.108)
p T

(A, B are Hermitian) can be brought in a diagonal form

= Zekc,tck + const. ' (2.109)
k

by the so-called Bogoliubov transformation,

e = 3 [Ukptp + Vigah] (2.110)
p

The matrices U and V. can be choosen such that the c¢,’s again satisfy the fermion
Heisenberg algebra, if the a’s are fermions, or the boson algebra if the a’s are bosons.

Problems of the form (2.108) arise in a physical context where the total number
of particles is no longer a conserved quantity. Mathematically, the Hamiltonian no
longer commutes with the operator counting the total number of *bare’ particles,

N =3"ala, (2.111)
P

The message of the Bogoliubov transformation is that even in this situation it is
possible to identify new, precisely defined particles which automatically include this
number fluctuation, as long as the Hamiltonian only contains bilinears of the bare
creation and annihilation operators. These new particles are ‘composites’ of the bare
particles, in the sense that they can be for instance partly electrons and partly holes.

These non-number conserving problems arise in a variety of physical situations. The
bosonic variety shows up if one requantizes condensed states by dressing them up
with quantized collective modes - a typical example will be discussed in chapter
V (Holstein-Primakoff). On the fermionic side, the invention of this mathematical
fact gave Schrieffer his place in the list 'Bardeen-Cooper-Schrieffer’: the Bogoliubov
transformation is doing the hard work in the microscopic theory of superconductivity
(chapter VI).

Although (2.110) can be proven in general, we will save this effort because we will
only need the Bogoliubov generalization of the two level problem,

H = eqata + &,b'd + ta’d! + t*ba (2.112)

Instead of two levels |1 > and |2 > we consider now two fermions, a and b, having a
coupling ¢ in the ’particle-particle channel’. The Bogoliubov transformation for this
case 1s,

d = ua+v'b

cp = wal —ub (2.113)
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and by conjugation,

c = ua + vb!
o = va—ubt (2.114)

= exercise 2.23

One should now determine the inverse transformation, yielding expressions for a,b
etcetera in terms of the the ¢;’s. The Hamiltonian is expressed in the ¢;’s and one
demands that all scalars multiplying the operator products vanish, except for the
terms in front of the number operators of the new fermions cJ{cl and 6302. This
becomes particularly simple if one assumes £, = €, = 0 and real £. One anticipates
that the particle and the hole will appear with equal and real amplitudes, u = v =

1/v2,

o L,
G = \/5( T+b)
& = \/Li(oﬁ—b) (2.115)

Substituting the inverse

1

— 1
= — +c
a \/5( 1 2)
1
b = ﬁ(c{ — ) (2.116)
in the Hamiltonian
H = t(a'b! + ba)
t(cley + cley — 1) (2.117)

The Bogoliubov-problem is not quite the same as the ordinary diagonalization prob-
lems which we studied before. The eigenstates are now superposition of states with
different numbers of particles. Also, there is a new vacuum state. It is defined by
¢12|[vac >= 0, while the original vacuum had a|vac >= b|vac >= 0. The new single
particle states remain degenerate but move up in energy with an amount ¢, while
the new vacuum shifts down by ¢. This vacuum shift is related to the energy source
stabilizing superconductivity - see chapter VI.

= exercise 2.24
— exercise 2.25

Pair interactions.

Let us now turn to interactions. It is nearly always assumed that the constituents
interact via pair interactions. This is in some important cases justifiable: electrons
interact via Coulomb interactions and He atoms via van der Waals forces. However,

36



it is not necessarily always the case and the truth of the matter is that many particle
phenomena driven by multi-particle interactions are largely unexplored.

A pair interaction looks like

Vy = ‘Zj V(,5) - (2.118)

i<j=1

where the two particle potential might depend on the positions, velocities, spins
etcetera of the particles i and j. For indistinguishable particles, we can directly use
the recipe (2.85-2.90) to write the interaction term in second quantization

= —ZZVMNUL al rasap . (2.119)
T8 P,q

With the ‘interaction matrix elements’,
Vogrs = <p(1)a(2)|V(L,2)|r(1)s(2) > . (2.120)

Notice that one has to keep track of the order in which the operators appear, because
of the fermion sign. The most common interactions (e.g. Coulomb, van der Waals)
only depend on the distance between the particles: V(i,j) = V(r; — ;). Using (no
spin-orbital coupling)

<7rlp> = P,(F)|sp > (2.121)
we find
Vogrs = /d 2 dry /drldrz < pqli' >< A |V(L, 2)|R7 >< Fifh|rs >,

= /dr’i'drg /d’l"ldT'g < spsqly (71 (r2') V(7 — 75)6 (' —n)
X 5(7'_; - TB)¢T(F1)¢S(F2)|STSS >,
Bpabsase [ AT FEI )V (L= A (FOa(R) - (2122)
In principle these can be calculated from the full knowledge of the single particle

sector. In practice, one often only considers simplified (‘model’) forms for these
interaction matrix elements.

Nursery school diagrams.

In the course of this lecture series several ways of dealing with the many-particle
problem will unfold. One of these alleys is the diagrammatic perturbation theory
which will be treated in the final chapter, in a kindergarten style. Already earlier on
it will turn out to be convenient to draw diagram-like pictures. A typical example will
be the ‘diagram’ for (2.119). One imagines time running from left to right and space
from bottom to top. The ‘history’ implied by (2.119) can be pictorially represented
by the diagram as shown in figure 2.2.
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Figure 2.2: ‘Nursery school diagram’ of the pair interaction. the incoming particles
in states s and r are annihilated by the interaction (dashed line) to be subsequently
created in the states q and p.

Equations of motion.

Besides exact diagonalization and a couple of perturbative methods, it will turn out
to be particularly convenient to set up calculations using the equations of motion for
the operators. Next to the Schrodinger picture (2.26-2.28), where the time evolution
of the system is described in terms of the time dependence of the states, one can as
well ascribe the time evolution entirely to the operators (Heisenberg picture). For
instance, the time dependence of an observable A with operator /1,

A@) = <9O)IAR() >

< plAE) | > (2.123)
with |¢(t) > as given by (2.28) and
A(t) = e Aei™ (2.124)

The time-evolution of the operator can be calculated using the operator equation of
motion (using units A = 1, such that frequency is measured in units of energy),
OA(L .
i 51E ) = 1A = [A(t), H] (2.125)
ot
This equation applies to any operator, including the creation- and annihilation oper-

ators. The advantage is that one can stay in 'operator space’, figuring out the physics
by doing algebraic manipulations.

If a problem can be diagonalized, it is of course also possible to solve the system of
differential equations implied by Eq. (2.125). For instance, given the single particle
problem (2.102), the time evolution of a bare creation operator is determined by,

id:fl = thr [a];,a;f,a,.]
pr

— 3" gyl (2.126)
p
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where the second line is derived by using the fermion algebra. This yields a system
of linear, first order differential equations with the same dimension as Hilbert space.
To solve this system, one looks for new operators obeying

ic} = —epcl (2.127)

such that (c}(0) is the operator at t = 0)
ol = ertel (0) (2.128)
while a; can be written as

af =3 eHtel (0)Uy, (2.129)
k

where g, of course corresponds with the eigenvalues (2.106) and U with the transfor-
mation (2.104) of the time-independent formalism.

— exercise 2.26

In many cases one is not so much interested in the time evolution of a single particle,
but instead in expectation values of density or current operators which relate to
bilinears in terms of the particle operators of the kind pr, = a;fcakﬂ. In the special
case of a single particle problem these are easily calculated using (2.129). However,
it will turn out that in the presence of interactions it is often convenient to study
the time dependence of py, directly. For instance, considering the ‘diagonal’ density

Hgl—= a:fjaq, its time evolution as determined by the single particle Hamiltonian is,
o f
1My = Z e [a};aq, a;gaT]
pr
= ). (—hpqa;f)aq + hqpagap) (2.130)
P

again yielding a system of differential equations which in principle can be solved.
—> exercise 2.27

The equation of motion method does not cause miracles - if the problem cannot be
solved exactly by e.g. direct diagonalization, the equations of motions are also of
little help. Using equations of motions, the kind of trouble caused by interaction
terms can be seen easily. The time dependences due to the interactions are caused by
the commutator with the interaction term in the Hamiltonian (2.119), for instance

1
[a;r, Vz] = rsz;qqu” [a;r, a;a;aras]
1
= 5 2,,:,, (Voart = Vogir) aalar (2.131)

Next to changing its own quantum-number, the particle [ now also causes another
fermion to change its quantum number: the particle ‘scatters against an electron-hole
pair’. The ‘nursery school’ diagram of this process is indicated in figure 2.3.
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Figure 2.3: ‘Nursery school diagram’ of the scattering of a particle against o particle
hole pair, due to the pair inleraction.

The operator a},a:f]ar has of course also a time evolution of its own, connecting it via
the interaction term with operators composed of five fermion operators, and so on. In
this way one has to explore the full N particle Hilbert space in order to establish the
time evolution of even the simplest object, the single particle. I already announced
that an exact solution is per default not possible.

= exercise 2.28

Although exact solutions are out of the picture, equations of motion are often used
in this lecture series. The reason is that this method fits quite well to a highlight
of quantum condensed matter physics: if classical condensation occurs, it becomes
qualitatively correct to ‘decouple’ the equations of motion in the very beginning, by
approximating afala, — Oa} (schematically), where O is a scalar quantity, the ‘order
parameter amplitude’. Doing so, one obtains an effective single particle problem
which can be solved, yielding the ‘collective modes’. This is called the ‘random phase
approximation’, or ‘RPA’.

2.5 The su(2) Lie algebra: spin.

Up to now we have encountered two types of algebra, the fermion- and boson Heisen-
berg algebra’s, which we have learned to appreciate as the mathematical language
underlying the concept of particle. These algebra’s are implicitly tied to a funda-
mental symmetry of nature: translational invariance which allows for the concept of
linear momentum. Nature also exhibits more complicated continuous symmetries,
which are associated with more complicated Lie algebra’s. Physically, these imply
other ‘particles’ which behave quite differently from free bosons and fermions.

In most of condensed matter physics one only encounters the su(2) algebra, describing
spin.!. In chapter V it will be explained under which circumstances spin becomes a

1Some exceptions: the mysterious order parameters of superfluid > He become immediately ob-
vious if one realizes that one is dealing with a nearly SO(4) symmetric problem. In addition, it
often turns out to be mathematically convenient to ‘enlarge’ a quantum spin problem to SU(N),
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physical object. It is the spin of the electron as explained by Dirac, except that it oc-
curs on its own: due to an interesting collective process (projective renormalization),
the electron looses all its properties except its spin and the problem is completely
described in terms of the su(2) algebra.

The algebra.

The su(2) Lie algebra should be familiar

[82,5Y] =48, [5%, 8 =idv, [$v, 8] =ib" (2.132)
and the identity. (2.132) is sometimes written in the shorthand notation

[$°, 8%] = iee3e (2.133)

where €2 ig the Levi-Civita symbol. In contrast to the larger Lie algebra’s, su(2)
does not contain mutually commuting elements. The Cartan subalgebra (the subset
of commuting elements) contains therefore only one element, usually choosen to be
S7: the z component of the spin does not fluctuate. In addition, the algebra has one
Casimir operator, the ‘total spin’:

— -
~ ~

S?=8-8=(9,)2+(5,)% + (5,)? (2.134)
commuting with all elements
[5’2,5’“] =0, a=u1x,u,2 | (2.135)

The Hilbert space of a globally invariant SU(2) problem can therefore be divided up
into sectors characterized by the two spin quantum numbers S, M;,

S?i; S, My > = M,|i; S, M, >

S82)i; S, My, > = S(S+1)]i; S, M, > (2.136)
From representation theory it follows that S can be a positive (half) integer and

M=-§-S+1,---,5-1,8 (2.137)
A state with ‘total spin’ S is therefore 2S5 + 1-fold degenerate, and the state with

M, =S (My; = —S) is called the ‘maximum (minimum) weight’ state. In addition,
the ‘step’ or ‘flip’ operators,

St = 8448

S™ = 8% _8v (2.138)
have the useful property of changing the M, quantum numbers according to (A(S, M,)
is a normalization constant),

A(S, M) ST S, My > = |58, My+1> , 5%)i;5,8 >=0
A(S, M) S8, My > = |68, My,—1> , 57|i;S,-S >=0 (2.139)

subsequently defining a perturbation theory controlled by 1/N. See, e.g., A. Auerbach ‘Interacting
electrons and quantum magnetism’ (Springer, New York, 1994).

41



Another way of writing su(2),

~ ~ ~

(5,57 =257, [8,8%] = 5+, 6,87 =5~ (2.140)

—= exercise 2.29

The electron spin (S = 1/2).

The electron is a doublet under su(2) (S =1/2,25 + 1 =2). In terms of the spinor
representation (2.2) the spin operators can be expressed by Pauli-matrices,

& 110 fe L[ 001 ay 1[0 —%
S_§<0—1>’S_§(1 0)’S—§<z‘ 0) (2.141)
Alternatively, the spin operators might as well be expressed in terms of the fermion
Heisenberg algebra,

A 1 A
S = _(C;[TciT - Czicil) , L= czTTciT + Cilcil

2

~ A

ST = c;rTc,-l , S

i
where i is an arbitrary label. Spin is an example of a density-like quantity, corre-
sponding with a bilinear in the fermion operators: ~ aLal

= exercise 2.30

Many spins: vector addition.

We will be interested in problems of many interacting spins, of the form,

3" Jism (S : S‘j) (ﬁk : 5’;) + (2.143)

ijkl

M= Ty 5+
ij

where the S’s themselves typically refer to electron spins. This class of problems is
globally su(2) invariant. This has the following meaning: define operators for the
spin components of the whole system

N
St = Yooy 5 BT, 7,2 (2.144)
=

and for the total spin of the whole system,

52 = St * Star (2.145)

Global su(2) invariance means that the eigenstates of the many-spin problem can be
labeled by S;,: and My, according to

gtzotﬁ; Stots Miot > = Miot|i; Stots Mior >
S2 15 Stoty Myt > = Stot(Stot + 1)|4; Siot; Mior > (2.146)
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The many-spin eigenstates can be constructed using the rules of vector addition as
discussed in elementary textbooks. The eigenstates of S* are easy. One writes product
states of the elementary spins, of the form

| Mo, >= | M,(1) > |M(2) > -+ |[My(N = 1) > |[My(N) > (2.147)

and the total z component is given by the sum of the z components of the individual
spins,

Mior = i M;(3) (2.148)

=1

The determination of the eigenstates of S2, is much harder. Although one gets some
help from group theory (Clebsch-Gordon coefficients, etcetera), group theory alone
is not powerful enough to allow for the construction of precise eigenstates of Sz, if
the system contains a macroscopic number of spins. The quantum spin problems are

generically unsolvable as well.
— exercise 2.31

Two interacting electron spins.

The simplest example of an interacting spin problem is the ‘two-spin Heisenberg
problem’,

H=7$ -5, (2.149)

where S describes a doublet - this is the analogue in spin space of the two level
problem. Let me illustrate how to solve this problem, using the bare minimum of
group theory. A basis for this problem is

L1> = [TM)>]12)>, la,0>=]T1)>]1(2)>
0> = [L@M)>]1@2)>,L,-1>=[1(1)>]1(2)> (2.150)

(2.149) is globally su(2) invariant and we already made use of this fact in the labeling
of the states (2.150): in so far possible, we indicate |Syor, Myt >. The largest Sio
which can be constructed from two spin 1/2’s is S, = 1, the three-fold degenerate
triplet. The maximum and minimum weight states |1,1 > and |1, —1 > of this triplet
are automatically also eigenstates of 52,. The My,; = O states |a,0 > and [b,0 >
are not eigenstates of total spin. One linear combination of these two states should
correspond with the M;,; = 0 triplet state and the state orthogonal to this triplet state
is non-degenerate and should therefore correspond with a singlet (Sio; = 0). Starting
out with the maximum weight state of the fully polarized state, one can systematically
work ‘downwards’ to smaller S;,; by using (2.139) to determine the non-maximum
weight states belonging to the large Si, states and finding subsequently the states
which are orthogonal to those, corresponding with smaller S;,. For the present
example,

S7I1,1 >=|a,0 > +],0 > (2.151)
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and the M, = 0 triplet and the singlet are therefore,
1
V2

These states diagonalize the Hamiltonian,

1
(|a,0 > +]b,0 >) , 10,0 >= —(|a,0 > —[,0 >) (2.152)

V2

11,0 >=

3J J
H=—2210,0>< 0,0+ = 3 |Lk><1k| (2.153)
z 4 k=—1,0,1

= exercise 2.32
== exercise 2.33

= exercise 2.34

2.6 Exercises chapter 2

2.1 a) Use (2.7) to show that the normalization conditions (2.1) and (2.4) are
identical.

b) Write < ;|1 > in the notation of section 2.1 (i).

2.2 The wave function of a free particle is given by P =< Flp >oc exp(afp - 7/h), as
we shall see further on. Show that ) is the fourier transform of 1.

Hint: use the completeness relation.

2.3 Show that, for a unitary matrix, ATA = 1 is also true. This implies that the
inverse of a unitary matrix is the same as its hermitian conjugate.

2.4 Show that the eigenvalues «; of a hermitian operator A are real numbers. Show
furthermore, that it is possible to choose an orthonormal basis of eigenstates
{|a; >} if the eigenvalues are nondegenerate.

2.5 Derive the time-evolution of an arbitrary state |¢p >,, using the fact that the
eigenstates of H form a complete orthonormal set.

2.6 a) The causal relation between 1(¢) ant 1(t;) can be written in the form
Y(t) = U(t, to)(to), where 1 is a solution of the time-dependent Schrodinger
equation (we assume H to have no explicit time dependence). Express U
in terms of the Hamiltonian. What is the causal relation in state-space?
Give the matrix representation of U with respect to the basis of energy
eigenstates.

b) Consider two observables A and B with [A, B] # 0. Is the matrix repre-
sentation of A with respect to the basis of eigenstates of B diagonal?

¢) Proof that the following definitions are identical: < 4, >= ¥, A;| < A;|¢ > (1)|*,
< A >=<p|AlYp >.

44



d) What determines whether a set of commuting observables describing a
quantum system is complete?

e) A spinless particle is in an orbital momentum state 2|1, 1 > +1|1,0 > —2|1, -1 >
(notation |1,m >). Normalize this state.

f) The operator A satisfies the relation A* = 1 (the unity operator). What
are the possible eigenstates of A?

g) The operator B satisfies the anticommutation relation AB + BA =0,
where A is the operator from excercise 2.6f. What is the eigenvalue of B,
belonging to the common eigenstate |¢p > of A and B?

h) Proof the relation [AB,C] = A[B,C] + [A,C]B, where A, B and C are
arbitrary operators.

2.7 a) Proof [p?, ;] = —2uhp;.

b) Show that the single particle Schrodinger equation with Hamiltonian (2.29)
implies the following relations

i < > ! < >

dt it i LITE
d < >y = < v >

dt pJ A= axj b

where < z; >; =< 9|z;|¢p >, etc. This is Ehrenfest’s theorem.

2.8 Solve the two-level problem with &) # £, and ¢t real. We will need this further
on.

2.9 Check the commutation relations (2.45).

2.10 Show that two identical fermions cannot have the same value for all of their
quantumnumbers, while this is possible for an arbitrary number of identical
bosons.

2.11 Write the ordering 342165 as a series of pair-permutations performed on the
ordering 123456. What is 7, for this case?

2.12 Proof that A is a projection operator by showing that A?* = A. Use the fact
that P is unitary and that 7y, = 7,7,
2.13  a) Proof the orthogonality and the completeness of the set of states (2.60).

b) In most cases where we use an explicit representation (i.e. position, mo-
mentum), k is used as a label for both the spatial and the spin part of the
wavefunction , k = (k, o). Suppose we work in position representation, the
single particle state |k > can be written as,

<msilk> = < F131|E0 =,
= <7Alk><silo> = Pp(r1)ds,.0
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In an analogous way, we obtain for an N-particle state.
< Flsl"'FNsNikl"'kN >

1 — —
= W Zﬁp < F181 i -FNSN|k1(P1)01(P1) <= kN(PN)UN(PN) > N
PP
1 . . - -
= —\/_—]\F Z?’]p < T181° TNSNU{I'pl(l)O'pl(l) s ]{,‘pN(N)O"pN(N) > .
PP

_1 hynd —
= \/m ;ﬂp Osi,0m1 " " Osn,opn wk‘pl (Tl) e '1/)1;'1,]\, (""N)

Rewrite this last result in the mixed notation (2.8).

2.14 Use the decomposition H = 3¢ ;_, [¢ >2< i|yH]|j >2< jls to express the Hamil-
tonian in terms of two-particle Slater determinants. Diagonalize the Hamilto-
nian.

2.15 Derive (2.67) by writing everything out in terms of single-particle states. Proof
that the eigenvalues of a non-interacting N-particle Hamiltonian are sums of
eigenvalues of the corresponding single-particle Hamiltonians.

2.16 Show that ¢ and a! are each other’s hermitian conjugate.

2.17 a) Proof the anticommutators (2.83).
b) Derive the equivalent of (2.71), (2.72), (2.75) and (2.83) for the bosons.
Use as input that blb; should count the number of bosons in state k.

2.18 Write the two-level Hamiltonian in second quantization. Construct the two
particle basis by applying fermion creation operators to the vacuum.
2.19 a) Show that, for fermions, 7 = 7ig: 7 is a projection operator.
b) Verify [’fbk,’fll] =0.
2.20 a) Check that the operators ¢ and c' as defined by (2.103) satisfy fermion
anticommutation relations.
b) Obtain the transformation of the kind (2.103) for bosons.
2.21 The operator N = 2k T counts the total number of particles, which is a

conserved quantity. Hence, /N must be invariant under unitary transformations
of the form (2.103). Check that this is indeed the case.

2.22 Diagonalize the two-level problem with €; # €, , ¢ real, using the second quan-
tization formalism.

2.23 Show that the c-operators obey the fermion anticommutation relations if the
transformation is unitary.

2.24 Diagonalize (2.112) with the Bogoliubov transformation for the case e, = *¢5 ,
t real.
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2.25 For bosons, a transformation of the form can be performed

2.26

2.27

2.28

CJ{ = cosh ye ***al + sinh ye %20,
c; = sinhxe® #)al 4 cosh xe'®=#2)p, (2.154)

a) Derive this by starting with the general transformation

= ofa +ald,
¢, = azal + aub, (2.155)

and imposing Heisenberg commutation relations on the ¢’s. Is this trans-
formation unitary? Derive the inverse transformation.

b) This transformation is not the most general Bogoliubov transformation.
There is no guarantee that it will diagonalize the Hamiltonian. For what
case (€, = €, OF €, = —&y) is it possible to diagonalize (2.112) through
this transformation? For what values of ¢ (real) and g, ?

) Derive (2.126), (2.127), (2.129) and (2.130).

b) Solve af(t) for the two-level problem with £; = ¢, , ¢ real.
)
)

Derive (2.130)

Consider the two-level problem with degenerate energy-levels one and two.
Feynman introduces this as a toy model for the ammonia molecule: level 1
corresponds to the nitrogen atom being located below the plane spanned
by the hydrogen atoms, and level 2 with the nitrogen located above this
plane. Suppose that the system is in level 1 at ¢ = 0. Calculate the
expectation value < n;(t) > using (2.129).

¢) Calculate < ny(t) > using the equation of motion: calculate the time
derivative of the operators which occur in the equation of motion of n,(t).
Solve the resulting set of coupled first order differential equations.

a) Derive (2.131). What is the meaning of the Hund’s rule exchange-term
Vg

b) Calculate the time derivative of aIa}ak for a Hamiltonian consisting of the
interaction-term (2.119).

2.29 Write the two-spin Heisenberg Hamiltonian H = J S, - 8, in terms of the spin

raising and lowering operators S=. Derive the equation of motion of Si* with
respect to this Hamiltonian.

2.30 Check that the operators in (2.142) form an su(2) algebra using the fermion

algebra.

2.31 Derive the exact ground state wavefunction and energy of the Hamiltonian

(2.143) for the special case that all exchange couplings (J’s) are negative. Is
this state realized in nature?
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2.32 a) Write the Hamiltonian of the Heisenberg triangle,
H=2JS, Sy + JSy-S5+ JSy-Si, in terms of the total spin operator.

b) Repeat (2.150) to (2.153) for the case of the Heisenberg triangle.
2.33 Consider a two-site Heisenberg problem. Calculate the time-dependence of
< S%(t) > by solving its equation of motion, for the case that the system is (i)
in state [0,0 > at t = 0, (ii) in state |a,0 > at t = 0.
2.34 a) What is the statistics of a spin S = £: fermion, boson ?

b) Consider S = 1. A spinor representation can be introduced,

Y(F,s =1)
P =1 $(Fs=0) |, (2.156)
P(r,s = —1)
in analogy with (2.2). The S = 1 basis-spinors are given by
1 0 0
,1>=] 0|, |1,0>=] 1], |L,-1>=[0]. (2157
0 0 1

Derive explicit expressions of the su(2) operators in this representation.

¢) Using the notation (2.142), the S = 1 states can be represented as follows

1,1> = CJ{TCETlvaC >= bl |vac >,
1
_ Pt oot _ ot
11,0 > = 7 (cch21 + Cuczr) |vac >= by|vac >,
1,-1> = CJ{TCEHVM >= b, |vac > .

The operators bJ{,O,_l are called hard-core bosons: operators acting on dif-
ferent sites commute, while no more than one boson can be present on the
same site (the ‘hard core’). Write the S = 1 spin operators in terms of
these hard-core bosons.

d) Solve the two-particle Heisenberg problem for the case of S = 1 spins.
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3 Pragmatic Band Structure

Most of the remainder of these lecture notes will deal with electrons. Fact is that for
the majority of electron systems encountered in solids, a description exists which is
not only qualitatively correct, but also accurate enough to allow for the quantitative
calculation of properties of the whole solid, like the cohesive energy, lattice parameters
and even structural phase diagrams as function of pressure and temperature. This is
called ’band structure theory on basis of the local approximation to density functional
theory’, or ‘LDA (=local density approximation) band structure theory’, or simply
‘band structure theory’.

The qualitative success of this approach rests in last instance in the principles behind
Fermi-liquid theory as discussed in chapter VII: in a rigorous sense, the electron states
in a metal can be calculated in terms of other entities, called quasiparticles, which
resemble electrons in all aspects except that they do not interact, while each of them
contributes to an average, static potential felt by all other quasiparticles. All you
have to know at this moment is that, instead of the solving the interacting electron
problem, one might as well solve a problem of non-interacting quasiparticles moving
in the static potential coming from the other quasiparticles and the lattice of ions
if you are dealing with electrons in a normal metal, a normal semiconductor or a
normal insulator. Nowadays, such a problem can always be handled, thanks to the
computer.

Another matter is to translate this into a quantitetive theory - Fermi-liquid theory
does not tell anything about numbers, let alone it could address the magnitude of
the cohesive energy which is a sensitive function of everything in the solid. To get
the numbers, one needs the LDA part: this is a way to obtain accurate estimates for
the aforementioned averaged, static quasiparticle potential. Historically, it has been
an outcome of a process of trial and error. Although it has been called ‘a triumph of
parameter fitting’, there is a way to rationalize its success to some extent, as I will
sketch in chapter VII. The bottomline is that LDA works far too well, even taking
these considerations into account, and all what remains is to accept it with a critical
attitude, knowing that one is on shaky grounds.

To my opinion, band structure theory does not deserve a substantial exposure in
a treatise dealing with the principles of the condensed state, despite its practical
importance. For this reason I will limit the discussion here to the bare minimum: (i)
the generalities of quantum-mechanics in the presence of static, periodic potentials
(section 3.2). (ii) A technical part, teaching you how to handle simple band structure
problems as will show up later in this course. Band structure becomes simple in
two limits, which will both be discussed: (iia) the weak potential limit, described in
terms of perturbation theory in terms of plane waves (section 3.3). (iib) The strong
scattering limit, which is described in terms of slightly perturbed atomic states: the
tight binding case (section 3.4). This latter part will evolve into a tutorial, learning
you to read the outcomes of real live band structure calculations. Finally an appendix
(section 3.5), listing the high-tech band structure methods available on the market,
with their weaknesses and their strengths.
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3.1 Electrons in a periodic potential.

We are interested in a problem of electrons moving in a lattice of ions. Having done
the LDA part correctly, this will give rise to a problem of non-interacting fermions
described by a Schrodinger equation,

B0 = |- g U6 910) = E4) (31)

where the potential U is set by both the ion cores and the average LDA potentials,
originating in the electron-electron interactions. We will be in first instance interested
in systems characterized by long range crystalline order. The ions form a periodic
structure and the LDA potentials have the same symmetry as the lattice. A crystalline
structure can be constructed from a Bravais lattice, the set of all points R given by

—

R = nyd; + ngly + nzds ni, N9, N3 integer . (3.2)

and a basis, centered on every site of the Bravais lattice. In this case, the potential
U(7) will have the same periodicity as the Bravais lattice,

UF+R) = UF) i=1,2,3 . (3.3)

To fully profit of this symmetry, reciprocal space is needed. This space is spanned
by the wave-numbers (or ‘crystal momenta’) k, and the Bragg peaks of the periodic
lattice are centered on the sites of the reciprocal lattice K, satisfying

efR = 1 (3.4)
It follows that
K = myby + maby + mabs ] my, My, M3 integer (3.5)

while the vectors 5; can be deduced from those in real space by

1

G- = 2mby (i, =1,2,3),
b = 2?}—7r(d'j X dg) (1,7, k cyclic),
v = vol(a,aqs,a3) ,
= - (dy X d3) (en cyclic)
K-B = a multiple of 27

For instance, the reciprocal lattice of a cubic lattice is itself a cubic lattice.

It is often convenient to assume that the crystal is of a finite extent, letting the size
of the crystal go to infinity at the end of the calculation. The boundary conditions
of choice are the periodic ones. For an arbitrary function f,

f(f‘) = f(f’-l-NlC_I:z) ; (i:1,2,3) . (38)
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Figure 3.1: The reciprocal lattice, and the mesh of k-points using periodic boundary
conditions, of the two dimensional square lattice in real space. The first Brillowin
zone 1s indicated, including the standard labeling of the high symmetry points.

and the wavevectors k are then also defined on a mesh, with a much finer spacing
than the reciprocal lattice K (lattice constant ~ m/(N;a)),

= m1 — ’)’)’L2 — m3 —
k= —b —b —b 3.9
w, oL + N, 2 = N, 3o (3.9)

= Bxercise 3.1

The lattices encountered in these notes will always be of the simplest kind: square
lattices in two dimensions, cubic lattices in three dimensions, and hypercubes in
higher dimensions (sometimes summarized with ‘cubic lattices’ ). The reciprocal
space of the square lattice, including the standard labeling of the first Brillioun zone,
is shown in figure 3.1.

Bloch-theorem

Having identified the remnants of translational invariance in the periodic crystal, let
us now exploit the ramifications of the remaining discrete symmetry in the context of
the quantum-problem (3.1, 3.3): the Bloch theorem. This states that the eigenstates
of (3.1, 3.3) can be written as,

Yp(M) = ¢ Tug(r) (3.10)

k is a vector in reciprocal space, and ug(7) a function with the periodicity of the
Bravais lattice,

up() = wp(F+ R) . (3.11)
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A function like ¢z (7) is called a Bloch function.

The Bloch theorem (3.10, 3.11) is a typical example of the role of symmetry in
quantum-mechanics, in this case the (abelian) group of discrete translations. The
proof of the theorem follows the same lines as used in the derivations of linear- and
angular momentum. For every vector R of the Bravais lattice a translation operator
T is defined, shlftmg the argument of an arbitrary function f(7) over a distance R:
Tpf(r) = f(T+ R) Because the Hamiltonian is periodic, it commutes with T~

THyp = HF+RyF+R) = HAYFE+R) = HIgp . (3.12)
because 1) can be taken to be any function,

TzH = HT; . (3.13)
The order of the translations does not matter if they are applied repeatedly,

Tyl f(7) = To Taf(F) = f(F+ R+ R) (3.14)
and different 7"s commute with each other

Tilm = TaTs = Tap i (3.15)

Because H and TR commute for all ff, the eigenstates of H are also cigenstates of
the set T,

Hy = ey ,

Teap = c(R)y . (3.16)
It is easy to deduce the eigenvalues c(R) of Ty. Using (3.14)

B+ R) = ¢(R)(R) . (3.17)
and ¢(R) has to be of the form,

o(R) = e*E | (3.18)

Together with (3.16) this implies that the eigenstates ¢ of H can be chosen, such
that for every vector R of the Bravais lattice,

Tai(?) = 97+ B) = *Ry() (3.19)
and this result is equivalent to (3.10,3.11).

= Fxercise 3.2.
=— Hxercise 3.3.
= Bxercise 3.4.

The functions uj

Substituting the wave-functions (3.10) in the Schrodinger equation (3.1) for the pe-
riodic crystal, we find that uj satisfies the eigenvalue equation,

Hpup(7) = [% (—iV+/5)2+U(?’)] ug(f) = egugp(?) (3.20)
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with the boundary condition
ug(P) = wp(F+R) . (3.21)

Because of the factor ei* % in (3.19), we directly infer that (3.20,3.21) are the same
if an arbitrary vector K of the reciprocal lattlce is added to the wavenumber :
whatsoever the outcome, it will repeat itself in k space, much in the same way as
the structure of the crystal repeats itself in real space. In real space one can describe
the crystal by drawing a picture of the unit cell, subsequently stating that these unit
cells have to be packed onto the Bravais lattice. Alternatively one can draw a picture
(build a model) of a larger chunk of the crystal. In the same way, in reciprocal space
one can consider the solutions of (3.20, 3.21) in the first Brillouin zone, stating that
such a picture can be extended to the whole of k space by ‘packing’ those on the
reciprocal lattice (‘reduced-zone scheme’). Alternatively, one can draw the picture
in a larger chunk of reciprocal space (the ‘repeated-zone scheme’)!. Such a picture
contains redundant information. However, as in the case of the crystal structure, it
is sometimes helpful in the process of visualizing the band structure.

The quantum problem (3.20, 3.21) is the difficult step in the band structure problem.
In principle, it is clear what to do: choose periodic boundary conditions, such that
the mesh of k points is sufficiently dense that clear pictures of the bands are obtained.
Subsequently, solve (3.20) for all k- -points independently, and plot as many of them
you need in order to get an impression of the bands. In essence, (3.20) amounts
to solving a molecule-like problem, where the role of the molecule is played by the
unit cell. Tt is of course not quite a molecule, because k enters into the kinetic
term in (3.20). The problem is different for every wavevector, and in addition one
has to take care of the boundary condition (3.21). Although the problem has been
enormously simplified by exploiting the remaining translational invariance, it is still a
formidable task to obtain accurate solutions for the ‘quasi-molecules’ (3.20). Because
molecular-like single particle problems cannot be solved in closed form, the strategy
is to choose some basis of single particle states which usually is rather large - the
art of doing these calculations is in trying to keep this basis as small as possible,
as will be further discussed in section (3.4). In this basis, a Hamiltonian matrix is
obtained (compare 2.34-2.39) which is numerically diagonalized, and because many
basis states are needed, many eigenstates are obtained.

== Exercise 3.5

These calculations are repeated for many lZ—points and the energies of the different
eigenstates are plotted as function of k: the band structure. For a three dimensional
crystal, one would need a four dimensional space (ks, ky, k, energy) to get a full view
on all the bands. This is of course not possible, and instead one plots the bands along
representative directions (high symmetry lines) in the first Brillioun zone.

In the figure, the full band structure of LayCuO4 is shown. LayCuQy is directly
related to the oxide materials in which the phenomenon of high T, superconductivity

'In addition, one can follow the remnant of the free dispersion in all of k space: ‘the extended-zone
scheme’.
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Figure 3.2: Unit cell of La;CuQy4, a parent material of the high T, superconductors
and the LAPW/LDA band structure of CaCuQO, (L. F. Mattheiss and D. R. Haman,
Phys. Rev. B 40, 2217 (1989)) - the band structure of LayCuQy is virtually indis-
tinguishable of that of CaCuQy in the valence band region. The dashed line indicates
the Fermi-energy. The labeling of the (square) Brillioun zone follows the convention

of Fig. (8.1).

In the figure, the full unit cell of this material is shown as well, and this cell is
very large - the high T; cuprates belong to the most complex inorganic crystalline
materials ever studied in detail. On a closer look, it can be seen that this material
consists of layers of CuQO, separated by layers of LaO. This greatly simplifies the
problem: the LaQO layers are inert,in the sense that the valence electrons (the ones
close to the Fermi-energy) cannot penetrate these layers at all. Instead, the valence
electrons are confined to the CuO (‘perovskite’) layers. These are nothing else than

| |
0 0
|
|

- O+Cu— 0O+ Cu—0O-
)

0o

—Q

Figure 3.3: The two dimensional perovskite planes of the high T, superconductors,
corresponding with CuO, unit cells stacked on a square Bravais lattice. The valence

bands of Fig. 3.2 originate in these planes.
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simple two dimensional square Bravais lattices with a unit cell consisting of one Cu-
and two O atoms (figure 3.3). It turns out that nearly all bands shown in the figure
are derived from the above simple perovskite layer. Only the bands near Ep (Fermi
energy) are shown and the band gap associated with the electronic states in the LaO
layers is so large that none of these states fit in the energy frame of Fig. 3.2, except
for the unoccupied La s—like free-electron like bands (E ~ k*), dipping down at the
M point. Hence, all other ‘spaghetti’s’ seen in the band-picture are derived from
the simple CuO, lattice. This is the reason to show this picture - at the end of this
chapter you will have a fair feeling where all these bands come from. Concerning
physics, the true electronic structure of La,CuQy is a completely different story than
the ‘simple’ band structure of Fig. (3.2), because of electron-electron interaction
effects.

Statement of the problem.

The difficulty in calculating (3.20) arises from the form of the potential U (ﬁ), which
is depicted in figure 3.4. Near the ion cores, deep potential wells are found which

Y

Figure 3.4: Sketch of the typical shape of the periodic potential felt by the electrons
in crystals. This consists of a superposition of deep potential wells, separated by flat
pieces in the interstitial regions.

are quite close the atomic potentials. In this region, the states will look atomic-like
and a natural basis would be in terms of the familiar ns, np, nd, ... atomic orbitals (n
is the radial quantum number). Increasing the energy, the potential starts to vary
until one reaches the regime where the electrons start to see a rather flat potential
corresponding with the regions in between the atoms: the ‘interstitial’ regions. The
electron states in these regions are much better described in terms of weakly perturbed
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plane waves, as are the states with a large total energy. The problem is that the
valence bands (bands in the neighbourhood of the Fermi-energy) usually correspond
with states which lie in the transition region between the ‘atomic-core’ and ‘plane
wave’ regimes. It is a fact of mathematics that it is very hard to interpolate between
atomic wavefunctions and plane waves: one needs a large numbers of plane waves
to obtain an accurate expansion for an atomic wave function, and vice versa. A
number of sophisticated tricks has been invented to overcome (or at least lessen) this
problem - a summary of this ‘orbital engineering’ program will be given in the last
section. Fact is, that your eyes have much less difficulty with this interpolation than
the computer has. The two limits are the subject of the next two sections: first the
weak potential limit (the plane waves), and subsequently the atomic limit, which is
called ‘tight binding’.

3.2 Weak potential scattering.

We start out assuming that the potential energy is very small compared to the kinetic
energy, which is always the case if the total energy is large enough - the findings in
this section always apply to high lying unoccupied states. This limit can be treated
with perturbation theory. The Hamiltonian in real space representation is divided in
a zero-order part Hy and a small perturbation H; (o is spin),

A

A = ;/M%Nm+mﬂw

2
.FIO = —h—A
2m
H = U, (3.22)

and the small potential can be treated perturbatively.
Plane waves.

The eigenstates of Hy are of course the plane wave states |Ea), such that

(k|7) =
and the energy eigenvalues are given by the ‘free dispersion’,

h2k2
B 2m

ek T (3.23)

8-

g (3.24)

— HExercise 3.6.

In order to simplify the counting, the electrons are thought to be confined in a
(hyper)cube of linear dimension L with periodic boundary conditions, such that the
volume needed for the normalization constant = L% (d is space dimension), while
the wave-vectors lie on a mesh in & space with coordinates,

21 n,

k)j— T, 5 ’I’LjIO, :l:l, +2 gttt (325)
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and at the end of the calculation one can take L — oo.
= Kxercise 3.7.
— Exercise 3.8.

Since the plane waves form a complete set of single particle wavefunction, the unity
is resolved by (|ko) is (3.23) in Dirac notation),

> ko) (ko|= 1 . (3.26)

k.o

The system characterized by the absence of any potential scattering is called the
‘Jellium’, and this plays a central role in the theory of the metallic state - the effects
of the lattice potentials are secondary with regard to the effects of electron-electron
interactions and can be left out in first instance (in the sense of the principle of
adiabatic continuation). This jellium of interacting electrons will be the main actor
in chapter VII.

= Exercise 3.9..

Periodic potentials and plane waves.

Only in some exceptional cases the problem with U(7) # 0 can be solved analytically.
A typical example is the Kronig-Penney model (a periodic array of delta functions)
in d = 1, as treated in quantum-mechanics textbooks.

— Hxercise 3.10.

Luckily, one does not need these closed solutions because perturbation theory works
quite well, as long as the potential is weak. As a first step, we write the Hamiltonian
in the basis of plane waves. Using (3.24, 3.26),

A =Y |ko)eglko| + Y ko) [ / di(ko|Fo\U(F)(Fo|kio)| (K'o|  (3.27)
E,G’ Eak?l,a

We have to evaluate the expectation value of the potential with regard to the plane

wave states. This simplifies for a periodic potential because its Fourier components

are only non-zero on the reciprocal lattice K, at the positions in k space where the
Bragg peaks appear. Hence,

UGEDY U(K)eE ™ (3.28)

where U (I? ) are the Fourier components of the potential. The matrix elements be-
tween the plane wave states become,

[ ERUAER = o [drdEHru(

) (3.29)



and (3.27) simplifies to,
S |Fo) (ko] + 3 |ko) UC (R)(k + Kol (3.30)
i K ko

Hence, the Hamiltonian blocks into subproblems, each of which is spanned by a basis
of plane wave states characterized by k plus all states obtained by adding to k an
arbitrary vector of the reciprocal lattice.

One dimension.

The essence of the problem can already be inferred from the one dimensional crys-
tal. We imagine that we first let the strength of the potential go to zero. The
bandstructure in the periodic-zone scheme is depicted in figure 3.5. It has free dis-

Figure 3.5: Free (dashed lines) and nearly-free (full lines) electron dispersions in he
repeated zone scheme. The first Brillouin zone is indicated with the dotted line, as
well as the Fermi-energy for a filling of two electrons per unit cell. The states crossed
by the dashed-dotted line will start to mix if the potential s switched on.

persions centered around the reciprocal lattice vectors. Switching on the potential,

the states intersected by the dashed-dotted line will start to mix according to (3.30):
the states |k), |k + K), |k — K), |k + 2K) - - -, with off-diagonal matrix elements like
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(k|H,|k+K) = Uk, (k— K|H1|k+2K) = Usg, etcetera. Because the spectrum of free
electron states is unbounded from above, we would have to diagonalize an infinitely
large matrix to obtain the exact solution and this is of course not feasible?. It turns
out, that even in the case that the potential is rather strong, it appears possible to
terminate this infinite progression at some large value of K if the interest is in the
states at low energies. The problem is that one has to go to really large values of K
(like 1000K in the present example) in order to have a reasonable description of the
atomic states.

This is different in weak coupling. If Ux << eg = —L (the typical kinetic energy
difference) and we are interested in the lowest lying band we have only to consider
the states |k) and |k + K), neglecting the states with higher K’s (|k+2K), |k +3K))
altogether. All what is left is a two level problem, with determinant?,

Er — W UK

=0 3.31
Uk  Epyx — W (3:31)
with solutions,
1 ! 2 2
Wik = 5(5k+K +ex) £ 5\/(5k+K — ex)* + AUk (3.32)

As long as we are not too close to the Brillioun zone boundary (dotted lines in the
figure), the potential will give rise to insignificant corrections of order Ui/ex. A
specialty arises right at the zone-boundary. The kinetic energy difference vanishes:
€x = Eryx and the two eigenstates of kinetic energy become degenerate. Hence,
regardless the smallness of U, the potential energy will ‘dominate’ and the ‘bonding’
state will shift downward with Uy while the ‘antibonding’ state will shift upward with
the same amount: at the zone-boundary, a gap opens up with the exact magnitude
2Ux due to the scattering against the lattice (see figure 3.5)! We will find in chapters
V and VI that this behaviour of the gap will play an important role in the weak
coupling theory of classical condensation.

The above can be repeated for every pair of free bands. In fact, perturbation the-
ory becomes better and better if the energy increases because the kinetic energy
differences increase quadratically with K , while the Upg’s decrease: at large enough
energies, electron states always become plane-wave like. The net result is indicated
with the full lines in figure (3.5): away from the zone-boundaries the bands follow the
free dispersions closely. Only at the zone boundaries the potential scattering changes
the situation drastically: gaps appear, which decrease in magnitude if the energy
increases. The physical interpretation is as follows: starting in the limit k— 0, the
wavelength of the electron is much larger than the lattice constant and on this length
scale the crystal looks like the uniform vacuum because the potential is averaged
away. Accordingly, the electron has a k* dispersion. When momentum increases,

2This problem is circumvented in the formalism using phase shifts - see the exact solution of the
Kronig-Penney model, exercise 3.10

3notice that the potential now appears on the off-diagonal, instead of the kinetic energy in the
H, molecule example of section 2.1

59



the wavelength decreases until the electron-wave precisely fits into the unit cell at
wavenumber K /2. Here the influence of the potential is at maximum, diffraction
occurs and the result is the band gap. In particle language, as a ramification of the
breaking of translation symmetry, the particle suddenly reverses its momentum if it
crosses the Brillouin zone boundary, and the scattering against a periodic potential
is therefore also called ‘Umklapp’ (German for ’suddenly turn around’) scattering.
When the momentum increases further, the lattice becomes invisible again untill the
next reciprocal lattice vector is approached, and the story repeats itself over and over
again as function of increasing energy.

= BExercise 3.11.

What happens if the magnitude of the periodic potential increases? Ug/ex is no
longer a small number and perturbation theory breaks down. All one can do for an
arbitrary potential is to diagonalize the problem, taking all states into account up to
a rather large total momentum k+ K. For a purely one dimensional problem (which
never occurs in nature: atoms have a finite spatial extent), the result will typically
look as shown in figure 3.6. The dispersion of the low lying states, which are most

\/ U

\/\_,/'

i L ; i ! i
-K/2 0 K/2 -K/2 0 K/2
k k

Figure 3.6: Evolution of the one dimensional band structure from weak potential (left)
- to strong potential (right) scattering, in the reduced zone scheme.

strongly influenced, becomes more symmetric and approaches e ~ cos(k), instead of

the weakly perturbed ~ k? of the nearly free electron case. In the next section, the
origin of these cosine dispersions will become clear.
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Higher dimensions.

It all works the same in higher dimensions, except that it becomes harder to visualize
how the free dispersions ‘fold’ in the Brillouin zone. For an impression of the four
dimensional space in which the bands of a three dimensional crystal live, I refer to the
extensive discussion in the book by Ashcroft and Mermin®. The notable differences
from the one dimensional case can already be inferred from the simplest example of
a higher dimensional system: the two dimensional square lattice. Folding the free
electron bands in the Brillouin zone of figure 3.1 yields the result shown in figure 3.7.
One would in fact like to present a three dimensional picture (ks, ky, E) but it is not

5
k

Figure 3.7: unperturbed (dashed lines) and weakly perturbed (full lines) free-electron

bands of a two dimensional square lattice along the high symmetry directions of the

first Brillowin zone (labeling as in Fig. 8.1).

easy to construct such a picture in a readable form, given that textbooks live in a
two dimensional space. In the figure we therefore follow the general habit to only
show the bands along the high symmetry directions in the zone - the extrema, band
crossings, etcetera, are usually found along these directions and the mind does not

4N. W. Ashcroft and N. D. Mermin, ‘Solid State Physics’ (Saunders College Publ., 1976), pp.
152-283.
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have difficulties interpolating the bands to the remainder of the zone.
— BExercise 3.12.

By construction, the free bands cross at the zone boundary and, as in the one dimen-
sional case, it is along X — M (and equivalent directions) that the gaps open up due
to the potential scattering (figure 3.8).

Filling the bands: nesting.

In the independent electron picture, the only effect of a finite electron density comes
from Fermi-Dirac statistics (section 2.3): fill up the bands with one electron per
k state and spin direction. As a rule of thumb, one electron per unit cell fills up
precisely one band. Including the spin degeneracy, this means that a density of
one electron/unit cell gives rise to a half-filled band if there is only a single band
accessible (with Ep roughly in the middle of the band). A single, spin degenerate
band is precisely filled up with two electrons. The problem is that usually more
bands are around and then one has to put effort in constructing the shape of the
fermi-surface.

=— HExercise 3.13.

In the one dimensional case, this becomes very simple. For every energy there is only
a single, four-fold degenerate (k, —k and spin) band state (fig. 3.6). Hence, for an
even number of electrons the Fermi-‘surface’ (consisting of two points, kr and —kp)
lies ezactly on the Brillouin zone boundary (kr = K). Since any potential, regardless
its magnitude, causes band gaps at the zone boundary, an even number of electrons
corresponds with a complete filling of the highest lying band. Therefore, even an
infinitesimal small periodic potential will cause a one dimensional electron system to
become a band insulator, if the electron density corresponds with an even number
of electrons/unit cell. This property is called ‘nesting’ and we will see that it plays
an important role in the weak-coupling theory of classical condensation (chapters V,
VI).

Nesting is rather special to one dimension, and it never occurs in a precise sense in
higher dimensions. For instance, in the two dimensional band structure of figure 3.8
the energies where the unperturbed bands cross (midpoint of the gap) vary consider-
ably as function of momentum along the zone boundary (X — M direction). For two
electrons/unit cell, the Fermi-energy will be as indicated in the figure. If the potential
is infinitesimal, the Fermi-surface will only hit the gap in the neighbourhood of the
point (%, =) and equivalent points. Only if U 2x/a) exceeds %rn%z, this system will
turn into a band insulator since Er lies in a gapped spectrum for all values of the
momentum.

= Exercise 3.14.

What happens in the higher dimensional cases if the potential becomes stronger and
stronger? Since the low energy states eventually have to end up as atomic states,
one expects the band structure to acquire atomic-like features. It is obviously rather
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hard to recognize anything atomic-like in the nearly-free electron bands. Starting
with atomic states, it is easier to imagine how to eventually reach the plane wave
limit. This is the subject of the next section.

3.3 Tight-binding electrons.

The nearly free electron picture of the previous section is rather impractical if one is
interested in typical valence electrons. Except for some special cases (‘free electron
metals’, like Li, Na, - - -), the structure of the valence bands looks completely different
from the figures of the previous section. Usually, one gets much closer expressing the
problem in a basis of atomic states, and this is called ‘tight-binding’.

One can define this in a very precise and quantitative way: the ‘linear combination
of atomic orbital’ (LCAQ) method. This is the standard technique used by chemists
to calculate the electronic structure of molecules - physicists find this inefficient and
prefer to use the smarter methods summarized in the next section. Let us nevertheless
consider how this works, to get a better feel for the approximations introduced later
on. One starts defining a basis describing the atomic states of all atoms in the solid,
|E,j,n,0) (n ~ n,l,my), describing the m;’th component of a state with angular
momentum /, radial quantum number n and spin o, centered on the j-th atom in
the unit cell, located at point R of the reciprocal lattice. Although the states on
one atom are orthogonal, the states centered on different atoms are non-orthogonal.
We assume that the above states are already orthogonalized in the remainder of the
discussion. This basis forms a complete set

S IR, j,m,0) (R, j,n,0| = 1 (3.33)

=3

R:j)”%‘”

and one can resolve the Hamiltonian (3.1) in this basis,

- S . h? o S
H = Z |R,j,n,0)(R,j,n,0] [—%A + U(f‘)} B, i 0, o) (R, 7, 0o|(3.34)

RjmR.j' o

Because the atomic wave functions are known explicitly, one can evaluate the matrix
elements appearing in (3.34).The outcome will have the following structure,

ﬂ- = Z |R7j7 777 O‘>€(R‘,], n)(R’]7 n70|
R"ij”’””
+ R otR4mE, i 0N R, 0,0l (3.35)

— —

R,j,mR 3" \n"50
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where the matrix elements ¢ and ¢ can be calculated numerically. The ‘on-site’
energies ¢ amount to a modified energy for the atomic states - they will be similar
to the atomic energies, except that they will also contain some effect of the lattice.
For instance, the degeneracy of the states with the same ! quantum number will be
lifted because the atoms are no longer in a spherical symmetric environment. The
‘hopping integrals’ or ‘transfer matrix elements’ ¢ parametrize the fact that electrons
can delocalize in the solid: electrons can tunnel from a state on one atom to a state
on another atom, (compare with the H; model, section 2.1).

Finally, one can profit from the periodicity of the potential to further simplify the
problem. Using Bloch’s theorem,

one obtains a Hamiltonian which is diagonal in momentum space

H = YIS Ik dm o))k bn ol
k;o' I
+ > |k gm0tk i n') (k50 o] (3.37)
Jmg'sn’

Assuming a periodic lattice, the on-site energies are the same in all unit cells, and we
may as well drop the R (or k) label. The kinetic energy, associated with the motion
through the lattice, is entirely contained in the hopping terms ¢, and for this reason
all the momentum dependence is in (compare 3.20),

t(k, 4,13 5", Zt (Ro, j,m; R, ', )e " * (3.38)
R

where I runs over all points of the Bravais lattice (R, is the origin).

As (3.30), (3.37) would become exact if all atomic states could be used. The issue is
again practicality: can we get away with only a small number of states? In addition,
we would like the hopping to fall off quickly with distance so that we only have to
know very few terms in (3.38). This becomes a real problem if one tries to use tight-
binding to understand the band structure qualitatively. For every state one adds,
one needs to know one more diagonal matrix element ¢ and a couple of hopping
parameters ¢. Since one wants to avoid a large calculation, one likes to consider these
parameters to be undetermined within certain bounds. When too many states have
to be taken into account, one looses track in no time because parameter space grows
too large.

Under which circumstances do we expect to get away with few states and short range
(nearest-neighbour) hoppings? This is obviously the case in the low energy region of
figure 3.4. One can first form bound states which lie deep in the potential wells, which
are very close to purely atomic states. Since the potential barrier is finite, electrons
can tunnel from atom to atom with a small amplitude (the ¢’s). The tunneling
probability drops off exponentially with distance and this causes the hopping to be
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short ranged. This picture applies only to the atomic core states (energies less than
~ —10 eV below Er) and it is not at all realistic for valence band states.

Nevertheless, it turns out that one can obtain a quite accurate description of the
valence bands, with a minimal basis consisting of only the atomic states which lie
directly at Ep: typically one s state and one set of p states, augmented with the
valence d states for transition metal atoms, and the f states for the rare earth- and
actinides. Exploiting in addition point group symmetry and some general empirical
rules regarding the magnitude of the matrix elements, this means that one can calcu-
late realistic band structures for many crystals nearly by hand®. This has its special
reasons. It appears possible to transform the sophisticated basis sets of the next
section in a way that the Hamiltonian acquires a ‘hopping’ structure, like (3.37)°.
Subsequently one can show that the hopping elements between the valence states
(s, p) and the higher lying states can be forced to be quite small while the hopping
matrix elements between the valence states are of a reasonable range at the same
time. Keep in mind that these ‘first principle’ tight-binding states are quite differ-
ent from atomic states. They leak out considerably in the interstitial regions, and
instead of the exponential decay, the hopping matrix elements depend algebraically
on the interatomic separation (typically ¢ ~ 1/d", where d is the bond-length, while
n depends on the angular momenta: see Harrison).

Let us consider how tight-binding works in practice, aiming at an understanding of
the bandstructure of LayCuQy.

Single band models on cubic lattices.

The simplest tight-binding model is the single band model, which is nothing else than
the two-level model of chapter II, extended to the lattice. It is assumed that only
one electronic state |io) is present in the unit cell at R; and the hopping is restricted

to nearest-neighbours. The vectors 5 point along the nearest-neighbour bonds, such

that 7 + 6 are the positions of the nearest-neighbours of site i. The single band

Hamiltonian is’,

H = S lio)e(io] + Y. [io)t(i+ do] (3.39)
i 15,0

Because only one state is present per unit cell, the problem is diagonalized by the

Fourier transformation (3.36),

H=3 ko) (E + ztf)/,;) (ko (3.40)
k.o

where z is the coordination number (the number of nearest-neighbours) and

1 i—‘__‘
= D (3.41)
8

5See the book by W. A. Harrison ‘Electronic structure and the properties of solids’ (Freeman,
San Francisco, 1980).

6see O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).

"Notice that the restriction to nearest-neighbours is often indicated by >°_,,5 14)(jl-
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The function 7; contains the information regarding the lattice structure. Notice that
we set the lattice constant @ = 1, such that the Brillouin zone is measured in units
of 7. For a hypercube (d is dimensionality),

p = 2iCOS(I€i) k= (ki ko) | (3.42)

== Exercise 3.15.

In the one dimensional case, the dispersion becomes wy = € + 2t cos(k): we recover
the cosine band of figure (3.7)! In higher dimensions, the bands remain ‘cosine like’.
For instance, on a d = 2 square lattice

Z ko) (‘e + 2t(cos(ks) + cos(ky)) ) (ko (3.43)

and so on. Notice that the total band width W = 4zt (z = 2d) - this total bandwidth
is the best measure of the kinetic energy in interacting problems, as we will see later
on.

— HExercise 3.16.
== Hxercise 3.17.

With a minimum effort we find bands which look quite realistic for a regime charac-
terized by strong potential scattering. In the d =1 case, it is not hard to see how to
interpolate between the tight-binding bands and the picture obtained from the plane
waves (figure 3.6). In higher dimensions this interpolation is not easy, although it is
clear that the tight-binding limit should make sense if a single atomic-like state would
become isolated (separated by large gaps) from all other states. In reality, there are
always more states in the neighbourhood, although their total number tends to be
small. To approach reality, we have to consider ‘few band’ models.

Two band models on cubic lattices.

Let us now consider the simplest extension of the single band model: a cubic crystal
containing two different states per unit cell. These occur in different varieties and
to keep the focus on La,CuO4, we will specialize on perovskite-like lattices in the
text, leaving some other possibilities to the exercises. Let us first consider a d = 1
‘perovskite’ lattice, consisting of alternating Cu and O atoms: Cu—O—-Cu—0—---
We assume that we only have to consider one orbital for C'u and one orbital for O
which are relatively close in energy. Anticipating on real CuO, we denote the C'u
orbital in the i-th unit cell with |d;ic) (from the atomic 3d state) and the O state
with |p;io) (from 2p). The Hamiltonian is (h.c. is hermitian conjugate),

H = Z(|d;ia>6d(d;io| + |pyio)ey(p;io] + (|d;i0)tpa(p;io| + h.c.))

+ Z [p;i = 1o)tpa(d;io] + |d;i+ 1o)tua(p;iol) (3.44)
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i counts here the Cu — O unit cells, while €, 4 are the on-site energies and tq the
hopping parameter from Cu to O. Notice the arrangement of the hopping matrix
elements: in the first line the hops occurring within the unit cell are counted, and in
the second line the hops connecting cell 4 with the neighbouring cells to the left and
to the right. (3.36) becomes (N is number of unit cells),
1 o
d;joy = — d: koe™
1 —
—=_ |pykoe™) (3.45)
VN %

and the Hamiltonian in momentum space becomes,

lp; joy =

H = M lld; koYeald; ka| + |p; ko)ey(p; kol
k,o
+ (|d; ka)tpa(1 + *)(p; ko| + h.c.)] (3.46)

because we started with two orbitals/unit cell, we find that the Fourier transformation
does not diagonalize the problem entirely: we are left again with a 2 x 2 (‘two level’)
problem in k-space. This is easy to diagonalize (chapter II), and the eigenvalues are,

€4+ € 1 k
wyp = d—2—” + 5\/(5,1 — £p) + 1682, 0082(5) (3.47)

We find two bands: a ‘bonding’ band (w_x) and an ‘antibonding’ (w, x) band. To

—K/ZCI) K/2 ~K/2 0 K/2
k k

Figure 3.8: Band structure of ‘Cu — O’ chain. (a) The ‘covalent/metallic’ limit:
g4 = €p. (b) The ‘ionic’ limit: €4 — &5 >> tpq.

understand the nature of these bands, let us consider the limits. When the splitting
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of the atomic levels vanishes (¢, = €,), the band structure reduces to that of the
single band model. Because we doubled the unit cell, the Brillouin zone became half
as large and £2|t,4cos(k/2)] is the folded version of the cosine band of the single band
model (Fig. 3.8a). On the other hand, if the splitting becomes much larger than the
bandwidth (W = 4t,4), the bands are well separated and the bandwidth of both p-
and d like bands can be estimated to be ~ 4t2,/|eq — &5 (Fig. 3.8b).

= Bxercise 3.18.

This minimal one dimensional problem reveals the basic principles and everything
else is a variation on this theme, except that the bands are harder and harder to
calculate if dimensionality and/or number of basis states increases.

—> Exercise 3.19.
Eleven bands: LasCuQOy.

To illustrate this, let us focus on the bandstructure of La,CuQy4. As a typical example
of the versatility of the tight-binding method, it turns out that all the bands shown
in figure (3.2) can already be quite well understood if one only considers the C'u3dd
orbitals and the O2p orbitals of the planar Cu and O atoms. The crystal structure
consists of a square Bravais lattice, with a CuQ, unit cell (see Fig. 3.3). This amounts
still to a rather large problem: there are 5 3d-orbitals associated with C'u and 6 2p
orbitals coming from the two O atoms: a 11 x 11 Hamiltonian has to be solved for
every k point. The ‘crystal’ is tetragonal, in the sense that the z and y directions
in the square lattice are equivalent, while the z-direction is inequivalent. In this
case, it makes sense to use the cubic harmonics: 2p,, 2p,, 2p, on the two oxygens and
3dy2_y2, 3dap2_1, 3dyy, 3dy,, 3dy, on the copper. Indeed, counting the total number of
bands in figure 3.2, we find a total of 11 (omitting the free electron bands at the very
top of the figure).

— BExercise 3.20.

It is clear that one needs many tight-binding parameters to describe such a complex
band structure. Such a set was extracted from a full band structure calculation.
Taking only nearest-neighbour hoppings, the outcome of the tight-binding calculation
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Figure 3.9: Tight-binding band structure of the perovskite planes of La;CuQy in the
valence band region. Only the oxygen 2p and the copper 3d states have been used
(after: H. Eskes, thesis, Groningen University, 1992). The labeling of the Brillouin
zone is indicated in figure 3.1.

Comparing this with the ‘exact’ band structure (figure 3.2), one finds that the cor-
respondence is not perfect, but good enough to get some qualitative ideas about the
nature of the electronic states. The interest is in first instance in the states close
(within 1-2 eV) to the Fermi-energy. The Cu — O band structure is nearly filled: for
the 22 bands (including spin), there are 21 electrons available (2 x O?~ = 12 plus
Cu*t = 3d%). According to figures (3.2) and (3.9), the uppermost part of the valence
band is dominated by a single band, which shows such a strong dispersing that it
‘outclimbs’ all other bands. As can be seen from the figures, the Fermi-energy lies
in a region where there are no other bands, except for the strongly dispersive one.
Since the density is one hole/unit cell, this band becomes half-filled and the states
near Er have something to do with the character of this particular band. All other
states are fully occupied and are therefore of secondary interest.

One observes that the tight-binding calculation reproduces the strongly dispersive
band particularly well. Because of the simple structure of tight-binding, it becomes
easy to get a clear answer to the urgent question: what is the character of the
states close to Fr? Recalling the simple Cu — O chain example, we found that
large bandwidths are caused by (a) a large p — d hopping matrix element, and (b) a
rather covalent character, in the sense that the Cu and O levels are close to being
degenerate. The second condition is fulfilled for all states. It was already known
for a long time that cuprates are rather covalent materials. Hence, to identify the
nature of the states near Er one only has to look for the largest ,4. The magnitude
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of the hoppings depend on the cubic-harmonic quantum numbers of both orbitals
involved in the hopping process (see 3.35). In the present case it is easy to estimate
the relative magnitude of the different hoppings. Consider a pair of orbitals, centered
on neighbouring lattice sites. Some examples are shown in figure 3.10. One can

QY )
8 TN

Figure 3.10: Cubic harmonics of 3d and 2p orbitals on neighbouring Cu and O, lattice
sites: (a) 3dg2_y2 and py. (b) 3dgy and py. (c) 3dgy and p,.

estimate the overlaps from these pictures. As a first rule, the more orbitals point
towards each other, the larger the overlaps are, and thereby the hoppings. Both the
3d,2_y2 and the p, orbitals have their lobes pointing precisely along the bond and this
will optimize the hopping (figure (3.10a): this is called a o bond). On the other hand,
the 3d,, and p, states are both oriented perpendicular to the bond direction, and
this will yield a finite hopping which is, however, much smaller than the o hopping
(fig. 3.10b: 7 bond, ¢, is typically half ¢,). Also the phases of the different lobes of
the cubic harmonics play an important role: if a plus lobe overlapping with a plus
lobe gives rise to a net positive hopping, a plus lobe overlapping with a minus lobe
will give rise to a negative value of the hopping matrix element. If both overlaps are
equally large, the hopping will interfere away completely. For instance, an electron
cannot hop from a 3d,, orbital to a neighbouring p, orbital (figure 3.10c).

— HExercise 3.21.
= Hxercise 3.22.

From the preceding discussion, it is clear that the prime candidate for the strongly
dispersing band in the cuprate is the one derived from Cu 3d,2_,2 and the o-like
oxygen states, p; on O; and p, on O,. We only consider the p — d hoppings, and in
the same parametrization as for the one dimensional CuO problem, the bands are
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given by

Eq T Ep 1 . k:c . k
wyp = ; P4+ 5\/(6,1 —gp)%+ 16t12,d(sm2(3) + sm2(—22))

Wop = Ep (3.48)

consisting of a (for accidental reasons) ‘non-bonding’ band wy and a pair of bonding
and anti-bonding bands w.

= Exercise 3.23.

The bands of this ‘three-band’ model are shown in figure 3.11. The strongly dispersive

Figure 3.11: definition of the three band model, and its band structure (t,¢ = 1.5 eV,
and eq — e, =1 eV).

anti-bonding band is already accurately reproduced by this very simple model! It
turns out that this simple model reproduces the correct physics - also the full-size
calculations indicate that the states near Ep are nearly exclusively of 2% — y2,p,,
character. Stronger, although band structure theory has not much to say about
the electronic structure of high T, superconductors in general, it gets this orbital
aspect right. The extension of the three band model, including the electron-electron
interactions, is nowadays the standard starting point for the study of the problem of
high T, superconductivity.
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3.4 High-tech band structure methods.

Let me finish this chapter by a very brief description of the popular band structure
methods. T will do this from a strict consumers perspective: except for the first, they
all rely on rather sophisticated tricks and a full discussion of any of them would take
up many pages. I refer the interested student to the literature®. Instead, I will only
hint at the underlying formalisms, and point out which method performs best, given
a specific problem.

1 Semi-empirical tight-binding. This is nothing else than the tight-binding method
of the previous section, augmented with tables for the tight-binding parameters
(established by fitting experiment and first principle calculations) so that one
can attempt quantitative calculations. This is the cheapest-, but also the most
unreliable of all methods. It is typically used to calculate very big problems (like
extended defects, screw dislocations etcetera) involving simple atoms (typically
silicon).

2 Pseudo-potentials. This is in spirit very close to the weak potential problem
of section 3.2. I argued that the plane wave expansion becomes problematic
because of the the strong variation of the atomic potential. In fact, this ‘bare’
atomic potential is not quite the potential which is seen by the valence elec-
trons. The reason is that the wave-functions of the valence electrons have to be
orthogonal to the wave-functions of the atomic core-electrons. This orthogonal-
ity condition tends to keep the valence electrons away from the atomic-cores.
It turns out to be possible to derive recipies for effective potentials, seen by
the valence electrons, which take into account this orthogonality effect. These
‘pseudopotentials’ are much smoother than the bare atomic potentials. As
a consequence, the plane wave expansion converges much more rapidly than
would be the case if the bare atomic potentials would be used. This method
works of course best if the pseudopotentials are indeed very weak, as is the case
in the nearly free electron metals. It turns out, however, that it is the most
efficient method in other cases as well, as long as one is not dealing with the
(atomic like) 3d,4d,4f and 5 f-derived valence electrons. In these latter cases,
the problem is more than mere efficiency. When the pseudo-potential is not
shallow, it is actually no longer possible to define it in an unambiguous way.

3 The muffin-tin methods: LAPW, KKR and LMTQO. The truly hard cases are
the ones where neither the atomic-like basis sets, nor the plane waves are of
much use because the valence electrons scatter against an effective potential
which is of an intermediate strength. This is typically the case for d- and
f like valence electrons. The starting point is to divide up space in ‘atomic
spheres’ where the potential is atomic like and ‘interstitial regions’ where the
potential is rather flat (see figure 3.4): the ‘muffin-tin potential’. Inside the

8The most extensive discussion is probably by J. Kuebler and V. Eyert, in: Materials Science and
Technology (Eds. R. W. Cahn, P. Haasen and E. J. Kramer, VCH, Weinheim, 1991). A reasonable
introductory discussion is found in the second edition of Callaway’s ‘Quantum theory of solids’.
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3.5
3.1

3.2
3.3

3.4

atomic spheres one expands in terms of atomic-like states and in the interstitial
regions the wavefunction is described in a plane-wave like basis. In the spirit
of the Kronig-Penney model (exercise 3.10), one has now to match both basis
sets at the atomic sphere boundary. In the ‘Linearized Augmented Plane Wave’
(LAPW) method one chooses atomic states inside the sphere which have to be
matched to plane waves in the interstitial regions. This yields a very robust and
accurate method, which can deal with every type of potential. The downside
is that it is very expensive: one typically needs 100 basis states per atom in
the unit cell. Given the performance of the present supercomputers, this means
that the largest unit cells which can be dealt with are like the ones of the high
T, cuprates. Alternatively, the matching problem can be dealt with in a Greens
function formalism: the Korringa-Kohn-Rostoker (KKR) method. This is also
a very expensive method. However, a special type of basis can be extracted
from this formalism: the so-called muffin-tin orbitals, which are particularly
suited to deal with the matching problem. Starting from this basis, the so-
called ‘Linearized Muffin Tin Orbital’ (LMTO) method has been developed,
which exists both in a cheap and less accurate version (the so-called LMTO-
ASA method, typically 9 states/atom) and a very accurate and highly efficient,
so called ‘full potential LMTQO’, version. When pseudo-potentials do not work,
the latter seems the best choice on the market, with the added advantage that
it allows for a ‘first principle’ mapping onto an effective tight binding model
(see the discussion in the previous section).

Exercises

Show that there are exactly NiNoN3 = N allowed values of k£ within a unit cell
of the reciprocal lattice.

Prove the equivalence of (3.10) and (3.19).

Also in the many body context one can exploit the periodicity of the lattice,
although the symmetry property is of much less help in this context than in
single particle theory. We consider a Hamiltonian of the form

H = ZHl(’F;)—i—ZHQ(T_';,FJ)-F
i ij

a) Under what kind of translation is this Hamiltonian invariant?
b) To which conserved quantity is this invariance related?

¢) Introduce an operator which generates this translation and express 1t in
terms of the single-particle translation operators Tr,. Write down a Bloch
theorem of the form (3.19) for the many-particle case.

In order to count states in k-space, it is convenient to apply periodic boundary

conditions. The wave functions have to fulfill ¥(7;) = U(7; + N;a;) (i = 1,2, 3).
The allowed wave vectors now live on a fine mesh in k-space (see pp 42-43).
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Show that, regardless the crystal structure, the volume per allowed k-state is
given by

- (2m)
AR =
Q"

where d is the dimension of the crystal and  its real space volume.

3.5 a) Show that the Hamiltonian H; (3.20) is hermitian.

)
) Check the normalization and orthogonality of the Bloch functions.
)
)

o

3.6 a) Check (3.24).

Show that, for a free partlcle the eigenstates of H are also eigenstates of
the momentum operator p, with eigenvalues p = hk. This implies that a
particle with wave function ™ has momentum p= hk.

¢) What is the wavelength of a free electron with energy 1 eV? What kind of

energy must electrons in an electron microscope at least have, in order to
resolve structures on a length scale of one Angstrom?

o

3.7 Consider a three-dimensional cubic lattice with length L in each direction and
periodic boundary conditions.

a) Prove (3.25)
b) Show that in the (continuum) limit L — oo
d L d .
Ins - (_) [ d
v k;=2mn;/L 2m
¢) Show that the inner product of two states is given by

= o 27 )e - =
< kolk'd' >= ( g) 0o 0(k — k).

for L going to infinity.

3.8 a) Show that, for the case of periodic boundary conditions, the density of
states p,(E) of a spinless free particle in a cube of volume L3 is given by

mkL?  mvV2mE Iz

F)= = .
pr(E) 272h? 2m2h3

b) We now consider a particle inside the same volume but with the boundary
condition that ¢ = 0 at the boundaries. We assume the wave function to
be of the form

g = Asin ki x sin kyy sin k3 2.

What are the allowed values of ki, ks and k3? Why should one only
consider positive values?

¢) Normalize the wave function.
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d) The following general formula for the density of states py for a spinless
particle with boundary condition ¢ = 0 was derived by Weyl

mS
pO(E) = pp(E) - 87rh2

S is the surface of the box in which the particle is confined. Since p,(E) ~
L? the difference between the two boundary conditions vanishes for L

going to infinity. Verify this formula for the particle which we analyzed
under b).

+O(L).

3.9 a) In the previous exercise, we derived the density of states for a 3D spinless
non-interacting jellium using periodic boundary conditions. Adding spin
introduces an extra factor 2 in the density of states. Use this result to show
that the zero temperature total energy for a 3D non-interacting jellium
with spin is given by Ey = 2Nep ~ n*/®, where n is the density of electrons
and ep the Fermi energy.

b) The specific heat as a function of temperature is given by

o 2
cy = (ﬁ)v = E‘k%TP(EF),

where p(er) = mkp/(hr)? is the density of states at the Fermi energy.
Prove this. Hint: use n = [dep(e)np(e) = constant , to derive the
temperature-dependence of the chemical potential p. The standard inte-
gral

/oodoc::;22 1 _ .
—00 [‘)xem+1_ 3

may be usefull.
3.10 We consider the Kronig-Penney-model. This is a strongly simplified, one di-

mensional lattice-model, for which the bandstructure can be calculated exactly.
Let U(xz) be the potential which is defined by the following figure:

b
A, H I
9
Uo
v -
- —=>

We consider this model in the limit where b6 — 0 and Uy — oo, while P =
(%) bU, remains fixed. In this limit, U(z) consists of delta-functions with

strength P, spaced at an interval a: U(z) = Y2 _ Pé(z — ia).

i=-—00
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3.11

a)

b)
c)

Solve the Schrodinger equation in this limit

h* a2
- =F : 3.4
(~ gtz U0)) $60) = Eoto) (3.49
Show that the dispersion relation is determined by the equation
cos ko = cos ac + P~ aa, (3.50)
ax

where a = \/2mE/R’.

Plot the righthand side of this equation as a function of ac for different
values of P. Note that all curves intersect at ace = nm, where n is a positive
integer number.

The equation determining the dispersion relation only has solutions for
those values of « for which the absolute value of its righthand side is not
larger than one. Since « is a measure of the energy, these values of «
determine the energy bands. Use the result from b) to show that the
energy bands become broader as P becomes smaller. In other words, if we
increase the strength of the potential and thereby more strongly confine
the electrons in each interval, the width of the energy bands reduces.

Draw the low-lying energy bands both for small and for large P.

The velocity operator is given by

A 1.
YT T zh[T’H] T m mv'

Prove that the velocity of Bloch electrons in the state v, ; (n is the bandin-
dex) can be expressed directly in terms of the dispersion relation by

1 0e, (k)

hook

What happens at the zone boundary if the crystal potential is finite?

i (K) =

Use e(k) = e(—k) to show that a completely filled band does not contribute
to the conductance.

3.12 Check fig. 3.8 for yourself. Construct the bands for the following directions as

well: (—n/4,0) — (7/4,3r/4) — (n/4,0) — (n/2,7/4) (see fig. 3.1).

3.13 The density of states of non-interacting jellium electrons in two dimensions is

a)

given by

ple) = per spin direction, (3.51)

where A is the surface in which the electrons are confined.

Derive this using periodic boundary conditions.
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b) Express the Fermi energy in terms of the total number of electrons.

c¢) Calculate the total band energy for a filling of n electrons per unit cell.

3.14 a) Indicate the Fermi energy in the band structure in figure 3.7 for a filling
of n = 1,2 and 4 electrons per unit cell.

b) Fold the spherical Fermi surface for the different band fillings into the first
Brillouin zone, using the unperturbed bands.

c¢) Switch on the potential and show how the Fermi surface evolves as a
function of the potential strength at the filling n = 2.

3.15 Derive (3.40)-(3.42).
3.16 Consider the two-dimensional case (3.43).

a) Sketch the band structure along the usual high symmetry directions (e.g.
fig. 3.8).

b) Include a next-nearest neighbor hopping matrix element ¢’ (along the di-
agonals of the elementary plaquette) and show how the bands evolve along
the high symmetry directions as a function of ¢/t'.

3.17 a) Assume a single state to live on every site of the Bravias lattice of an
orthorhombic crystal: this is like a cubic crystal, except that the lattice
constants in the z, y and z directions are different. Derive the dispersion
relation in terms of the three different nearest-neighbor hoppings.

b) Consider a triangular lattice in d = 2 with a single orbital per site and
nearest neighbor hoppings. Derive the dispersion relation and plot the

bands along high symmetry directions.

3.18 The simple ‘Cu—O’ chain model can be used to illustrate the chemists’ concepts
of ‘covalent’ versus ‘ionic’ binding. If the system is half-filled, (eq —€p)/tpa > 1
is the ionic case.

a) Rederive (3.47) and determine the wave functions as well for all k.

b) Take 2 electrons per unit cell and calculate the total energy as well as the
charge distribution within the unit cell as a function of (64 — €,)/tpa- In
the covalent case, the cohesive energy is coming mainly from the kinetic
(band) energy. Which interaction (not included in the model) stabilizes
the ionic solids?
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3.19 Consider the following lattice:

3.21

3.22

3.23

It is a square lattice, except that the potentials are staggered. Assume one
orbital per site, nearest-neighbor hopping and on-site energies €4 # €.

a) Establish the Bravais lattice and the basis and deduce the shape of the
Brillouin zone.

b) Set up the Hamiltonian. Transform the states to k-space and diagonalize.
Plot the bands along high-symmetry directions for e4 = ep and for e 4/p =
€ + de, with de small.

¢) What is the relation with the single band model on a square lattice (3.43)7
Consider the case of two electrons per unit cell. Sketch the Fermi surface
for e4 = ep and e4/p = € * dc. Is this Fermi-surface nested?

(d) Is the Fermi-surface nested if ¢’ is finite (excercise 3.16)7

a) Sketch all 3d and 2p cubic harmonics on the CuQ, pervoskite planes.

b) Consider the reflections, rotations etc. with regard to points centered on
either the Cu or the O atoms. Which orbitals are equivalent under these
symmetry operations (= point group)?

Consider all possible hops between the eleven states in the unit cell. Estimate
which hops are likely the largest and which are the smallest.

Consider a square lattice with one s and one d,2_,2 orbital at each site. Parametrize
the nearest-neighbor hoppings with < dg2_y2,i|H|s, i+ 0 >~ tgq,

< dyz_y, i\ Hldg2y2, i + & >~ tye and < s,iH]s,i+ § >~ &5 The on-site
energies are denoted by < s,i|H|s >= €, and < dy2_y2, i|H|dz2_y2,i >= €q4.
Derive the bands along the usual high symmetry directions. Be aware of signs!
Why do the d and the s states not hybridize along I' — M?

Derive (3.48) (be aware of signs). Include a nearest-neighbor hopping t,, be-
tween |p;(O;) > and |p,(O2) >. Derive the Hamiltonian in k-space. This
cannot be easily diagonalized. What do you expect to happen with the non-
bonding band?
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4 The crystalline condensate.

The crystalline state of atoms in normal solids is the most familiar of all classical
condensates: most of the rigid objects appearing in the daily world are of this kind,
and the human senses are optimized to deal with them. Despite this familiarity, these
condensates are on the fundamental level as interesting as all other (less obvious)
condensates discussed later on. Crystals do not provoke the mind to question the
validity of the classical state. Atoms are heavy, and large masses surpress quantum-
fluctuations. With few exceptions (hydrogen, helium) semi-classics works too well,
because classicalness is already closely approached in the ultraviolet of this problem.
At the moment we start to deal with electrons this will change radically. In electron
problems, one is constantly bothered with a need to convince oneself that classicalness
makes sense at all.

In this chapter, we will use the crystalline state to put flesh on the bare bones of
section 1.2, in a scenery which is maximally intuitive. In addition, because of the
smallness of the quantum fluctuations, the qualitative aspects of the theory are rather
straightforward to understand, and this chapter is meant as a template for the more
complicated condensates of the next chapters.

In fact, it is quite difficult to formulate a rigorous quantitative theory of the crystalline
state, mainly because the interactions between the atoms are very complicated: with
few exceptions (van der Waals solids), they are not of the pair-interaction kind. The
problem is that the glue, keeping crystalline solids together, is made out of valence
electrons. The electronic structure of the valence electrons has something to do with
the bands of the previous chapter: the glue is of a quantum nature. Although it
starts out with pair-wise Coulomb interactions, after ‘integrating out’ the electrons
(see next section) the effective atom-atom interactions are of a multi-particle kind!.
This is the reason, that the classical level (in the sense of the definition of section
1.2) will only be treated in a rather sketchy way (section 4.1). The remainder of this
chapter is devoted to an exposition of the perturbation theory, which lifts the classi-
cal state to the semi-classical level (section 1.2). The main actors are the collective
modes, in this case the (acoustic) phonons. In section 4.2 these will be discussed on
the classical level and in section 4.3 it will be shown how these classical modes can be
directly used to develop the quantum perturbation theory around the classical state.
The next two sections are devoted to higher order corrections: the phonon-phonon
(section 4.4) and electron-phonon (section 4.5) interactions. This yields and interest-
ing, quantum-electrodynamics like world living on top of the classical state. At the
same time, however, it will become clear that these additional effects cannot threaten
the condensate, with as a possible exception the small polaron physics explained in
section 4.5.

Personally, I find the story of section 4.6 the most interesting one. Using the ‘Gaus-

IThis is still a subject of active research. It turns out that even in seemingly simple crystals
like silicon, one needs at least 10-point interactions or so to obtain a reasonable description of
dislocations.
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sian’ theory of the previous sections, it is not hard to prove that the crystalline
condensate cannot exist in one dimension. Without much effort, it is possible to
deduce the nature of the non-classical state which is realized instead: the floating
solid. In addition, the reason will be discussed why Helium is not a crystal at zero
temperature.

4.1 On the wave function of a crystal.

Let us start out with writing down the starting point of all of condensed matter
physics: for energies less than a MeV or so, the world consists of nuclei and electrons,
which are subject to Coulomb interactions, The Hamiltonian is known,

E[ — FIN+£’6+I:I6N
. P2 Ze)?
i 2M i<j IRi_ le
—p 2
~ p e
H = > 2+ ——
T 2m |7 — 75
Ze?

Hey = Z ESp e (41)
a single species of nuclei is assumed with charge Ze, mass M, momenta ]31 and posi-
tions ﬁi, and the electron momenta and positions are indicated with ; and ;. This
is a rather unpractical expression and a first simplification arises from the smallness
of the ratio of the electronic- to the nuclear mass: we can attempt a perturbation ex-
pansion with m/M being the small parameter. What is the zero-th order? Consider
the limit that M — oo (the so-called adiabatic limit). Because the kinetic energy of
the nuclei vanishes we can simply fix their positions and the electrons move in the
static potential coming from the localized nuclei. The electronic problem can now
be solved (in many cases one comes close to the exact answer with LDA) and the
total energy can in principle be determined as function of all choices for the atomic
positions {ﬁl} This defines a potential energy V', describing the effective interac-
tions between the atoms. Considering now a nuclear mass which is still very large
but finite, the effective Hamiltonian describing the system of nuclei becomes,

—

2
— —+

N P =
Hy = Z — + Z V(Rla Rj7 Rk‘a o ) (42)
i 2M 1<F<k<

where the interaction term is of a complicated form because it originates partly in
the system of electrons. One should subsequently consider correction terms O(m/M)
- because the electron system is in many cases characterized by very slow excitations,
these ‘non-adiabatic corrections’ become quite important at large length scales. This
perturbation theory is most easily formulated ‘around’ the crystalline condensate and
it will be discussed in more detail in section 4.5.

As for all Hamiltonians describing large ensembles of interacting particles, (4.2) can-
not be solved exactly. Actually, only in the limit that the interactions vanish (V' — 0),
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we know the exact answers: |0 >~ IT¥2 ¢l luac) or |0 >~ Y ¢l _,|vac) for fermions

and bosons, respectively, where c,Tc creates an atom in a plane wave state. Although we
will see that the fermionic wave-function does carry significance for the Fermi-liquid
state of *He (chapter VII), these have obviously nothing to do with the crystalline
state.

Let us turn instead to the general recipy of section 1.2. As I argued there, the central
step is the identification of the (‘coherent state’) single particle operator Y1({n;})
which ‘hard-wires’ the nature of the macroscopic state in the total wave function.
We now use our knowledge about the answer: we know that we can identify the
locations of individual atoms in real space if they form a crystal (either by diffraction,
or directly using a scanning tunneling microscope). The simplest way to incorporate
this fact in the wavefunction isﬂ by taking a Gaussian wave-packet, centered around

an average ‘classical’ position R; with width o;

1 _l(ﬁi—ﬂ‘:)z
— 4 o;
wﬁi,ai(R) - (27T0’-2> ¢ (4.3)

where R;, 0; take the role of classical variables {n;}. We define a set of second quan-

tized operators {1%r , Y=}, creating (annihilating) particles in the wavepackets
iy04 J7d

(4.3). These can be either fermions or bosons, depending on the atom under consid-

eration. As long as the ‘coherence length’ o is much less than the typical interatomic

N7

spacing R; — —RH(s, quantum statistics has no effect - in a moment we will see that
this condition holds in nearly all crystals?. We now write the ‘classical’ part of the
wavefunction of the crystal (section 1.2, Eq.’s 1.1, 1.3) as a single determinant wave-
function, constructed from the single particle states (4.3)

2% ({R,0}) = M YL  fuac) (4.4)

As a next step, one should calculate the expectation value of the energy
Ea({R,0}) = (®({R,0})|Hiul2&({R, 1)) (4.5)

for all possible choices of {R, o}, compare Eq. (1.6), section 1.2. Because of the
complicated form of the potential V, this is a very difficult task and I am not aware
that this ever has been done explicitely. It is in fact in most cases not necessary
either. The width of the wavepackets o; is controlled by the ratio of the kinetic to
the potential energy, and this is controlled by the atomic mass M which we know is
quite large. We can again first consider the ‘truely’ classical limit M — oo to decide
what happens if M is large but finite. In the infinite mass limit, only the interactions

2Helium crystals are the exception. For instance, the fermionic nature of ® He is responsible for
the phenomenon of ring exchanges.
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are left, and we at least know the nature of the ground state in this case: the atoms
form a structure characterized by long range order in physical space - the crystal.

We might as well try to quantify the magnitude of the long range order by introducing
the order parameter,

0= %((I)(ﬂ 3" 6(R; — Ro)|®o) (4.6)

i,Bo
where |®,) is the ground state wave-function R, the coordinate of atom i and Ry
runs over all sites of the Bravais lattice (assuming a single component system, with
one atom per unit cell). When the atoms would be exactly localized on every lattice
site, O would be equal to one. Assume that the state (4.4) has something to do

with the ground state if the R’s would lie on the Bravais lattice Ro. Since all atoms
are equivalent because of the long range order, they have to be described by wave
packets with the same width gg. If this width is non-zero, the order parameter will
have a magnitude O =1/ /210y, a number which is smaller than one (the completely
localized case), but still finite.

How to calculate the classical ground state? One can use the knowledge about the
long range order of the ground state, by writing an ansatz for the wave function

|98 ({a, 00)) = T}, Y}, fvac) (4.7)
090

in terms of one width oo and a set of lattice constants a; giving the dimensions of the
Bravais lattice. It is assumed here that the symmetry of the crystal is already known
- this can also be determined from (4.5), but we save us the effort. The classical
energy is now only a function of o and the lattice constants, and it is minimized by

dEci({a;}, 00)

0
60’0
55(;!({&;},00) N .
5a! = 0, ¥ (4.8)

Since the potential V is not known, (4.8) cannot be solved explicitely. It turns
out, however, that quite generally ‘saddle point equations’ like (4.8) give rise to
self-consistency conditions for the classical variables {n}. Although these conditions
cannot be derived in an explicit form, the principle can be vividly illustrated in the
present context. Let us start, assuming that M — oo so that op = 0. We adjust
the a;’s untill we have found the minimum of the potential energy. We consider
now all atoms fixed except for a single atom which we displace a little from its
equilibrium position. If this displacement is small enough, the well will be harmonic:
By ~ 3K O(R; - R'{),i)z . We now switch on the kinetic energy of this atom and
if its mass is large enough, the atom will only probe the bottom of the well. This
amounts to an harmonic oscillator problem for the single particle wavepacket (4.3)
(we only consider the radial motion)
R 4?1

L Loop — Y b (R = Ede (R
2M(¢{R,f+2K ( 0,4 Rl)) wRo_i,(n(Rl) EwRO‘i,al(Rz) (49)
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This oscillator vibrates at wy = 1/K©® /M and this will always be small compared
to the magnitude of the potential if M is sufficiently large, validating the harmonic
approximation. In addition, the ground state wave function will be of the Gaussian
form (4.3), with a width (0{”)2 = h/(2V M K©®). This width will again be very small
if M is large.

We are not quite finished because all atoms in the solid have a tendency to delocalize
slightly, including the atoms neighbouring the atom we just considered which are in
turn responsible for the shape of the potential well from which we determined the
wave packet. There is no reason for the other atoms to behave differently from the
one we just considered, and all we have to do is to recalculate the potential well of the
‘central’ atom, including the effects of the slight delocalization of the neighbouring
atoms. This will increase the lattice constants slightly and it will tend to make the
potential smoother, with the effect that the potential well becomes less deep,

!
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Figure 4.1: Illustration of the mean-field problem, implied by the wavefunction (4.7).
The potential well is indicated, seen by an individual atom, coming from the crystal
as a whole (Vy). The atom can delocalize slightly in this well (¢1), and because its
neighbours also delocalize a little, the potential well becomes less steep (V1), and the
atom delocalizes a little more (), by an amount which is much less than in the first
iteration. After a couple of iterations, the width of the wavepacket converges to a
fized value.

Because the well is less deep, the new force constant K < K(® and the wave-packet
of the atom under consideration spreads out more. However, as long as the crystal
exists, this spread is less than what is found the first time and if one continuous to
‘iterate’ one will find that both o, the a;’s and K converge to a fixed value. This
is called the self-consistent solution: using oy and the a;’s to calculate the potential
yields a K which on its turn yields the same g and a;’s. From the above, it is clear
that there is only one consistent way to construct the crystal if the ¢’s and a’s are
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allowed to vary, under the constraint that they are everywhere the same, and one
concludes that the self-consistent state has to correspond with the classical ground
state. In the context of electron problems, it will be explicitely shown that the above
iteration procedure indeed amounts to the minimization of the energy.

If one is familiar with the Weiss molecular-field theory of statistical mechanics, one
should now recognize why this procedure is called 'mean-field theory’: a wave-function
of the type (4.3, 4.4) (or in general, (1.2), (1.3) ) maps the full problem on one of a
single constituent moving in the average ‘field’ of all other constituents.

In the self-consistent solution, the wave packets will all be centered on the sites of the
Bravais lattice B, and the only difference with the purely classical (M — co) crystal
is in the reduction of the order parameter (4.6) by a factor 1/v/2moo. This seems to be
a credible interpretation for the wavefunction of the crystal. A fundamental problem
is that this ground state wave function is not an eigenstate of the Hamiltonian! This
is very simple to see. The original Hamiltonian (4.2) was defined with regard to
homogeneous space. Therefore, total momentum is conserved. In other words, the
operator

Por=3..F; (4.10)
commutes with the Hamiltonian,

[P, H] =0 (4.11)
and all eigenstates should be labelled with a total momentum quantum number K,

Pit|®er; K) = K|®; K) (4.12)
Obviously, because all single particle states in the classical state are localized in space,
each atom is characterized by a momentum uncertainty,

—_ — 2
P? Y%O,ao|vac) — ((vaclYi, 5, P yimmc)) = (Ak)?#0 (4.13)

(vac|Yg s P

0,00
Because the classical state (4.7) is of the single determinant form, the momentum
fluctuations of the individual particles are uncorrelated, and the total momentum is
therefore also a fluctuating quantity,

(@8] P 10%(11) — ((@%({3 P 12%(()" = N(AkY (4.14)

The classical state is not satisfying (4.12) and is therefore not an eigenstate of the
Hamiltonian. One in fact expects that the classical state becomes precisely orthogonal
to all eigenstates in the limit that N — oo. The reason that the classical state is the
right one, despite its apparent violation of quantum mechanics, is a subtle one and
this will be further discussed in the context of spin-ordering (chapter V).

= Excercise 4.1
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4.2 The classical modes of vibration.

In the previous section we only explored a very small portion of the classical phase
space: only motions were considered where the crystal changed uniformly. The global
energy minimum occurs, however, in the phase space spanned by the degrees of
freedom of all atoms, and therefore we should consider collective motions as well.
The most important ones are those where all atoms are displaced simultaneously by
an infinitisimal amount: the collective modes. These dominate the low energy part of
the excitation spectrum. In this section, we will focus on the classical theory and in
the next sections these results will be used to construct and investigate the quantum
theory.

For simplicity we restrict ourselves for the time being to crystals characterized by
one atom per unit cell. In addition, we neglect the effects of the spreading of the
wavepackets (oq # 0) alltogether - in most crystals this gives rise to insignificant
corrections. In this limit, the ground state of the crystal follows from a minimization
of the potential energy

ov

T =0 for aln=1,---,N, a=1,2,3 . (4.15)

{n}
We now consider small displacements @, of all atoms around their equilibrium po-
sitions: R, = R?L + i, with components (in d = 3) R, = (Rp1, Rp2, Rua) and

’Jn - (unla Un2, unB)-

Because the displacements are small, the total energy can be expanded in a Taylor
series. Because of the linear stability criterium (4.15) the first order vanishes and up
to second order, (@ =1,2,3)

V(R Ry) = V(R KY)
oV
4= Zzu”aunﬂ<8Rm8Rn:ﬁ)

nn’aﬂ

(7 }+
= V(R?L, RO + Zzunaun’ﬂvnan’ﬂ+ (416)

nn’ a,f

In the second line, the matrix of derivatives Vyung is defined. In the remainder, the
ground state energy V(RS RY, - - -, RY) will be left implicit.

This amounts to a harmonic or ‘Gaussian’ approximation: V is quadratic in the
displacements, because terms ~ u® and higher orders are not considered. This is a
good approximation as long as the thermal and/or quantum fluctuations are small,
such that the displacements u are much smaller than the average interatomic distance
a’

[tnal € a . (4.17)
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The effects of the higher order (anharmonic) corrections will be considered in section
4.4.

— Excercise 4.2

Classical equations of motion.

In order to describe the classical dynamics ‘around’ the crystalline state, we simply
have to add the kinetic term to obtain the effective Hamiltonian,

P2 = -
H = ;ﬁ + V(Ry,--+,Rn) ,
PZ 1 30 H0 3
= ZW & §ZZVaﬂ(Rn — R )Unating + o?) (4.18)
n nn' af

where the ground state energy is omitted. The classical dynamics is derived from the
Hamilton equations,

L on _ P
T Py M
2 8H —,
Pry = — Oty = Z Vvﬂ )un’ﬁ = E Vav(RO R?n)una )
= - Z V’Yﬁ( m n’)un'ﬂ * (419)

Combining the two equations yields the classical equations of motion,
,u/na = % = I— == Zv‘lﬂ RO R’ )’U,nlﬂ i (420)
M M 5 oy

Diagonalizing the classical Hamiltonian: normal modes.

In the harmonic approximation, the equations of motion are linear while V' is real and
symmetric, and therefore they can be diagonalized. The eigenfunctions are the modes
while the eigenvalues define the mode spectrum. Let us first consider the simple
example of a one dimensional chain of atoms characterized by only nearest-neighbour
force constants K, We label the atomic positions R, and associated displacements u
by an integer j. In the harmonic approximation with only nearest-neighbour coupling,
the Hamiltonian is that of a chain of balls, where every ball is connected to its nearest-
neighbours by perfect springs with spring constants K,
2
=% 5 LKy - ) (4.21)

and the equations of motions become, using (4.19,4.20),

Mu] = K [2’U,J —Uj—1 — Uj+1] (422)
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Substituting (a is lattice constant),

wi(t) = upekIo—wit) (4.23)
into (4.22) yields the diagonal form

—Muwiug = —2K(1 — cos(ka))ug (4.24)

and the dispersion takes the familiar form,

g |
wy = 2\/%\szn(§ka)| (4.25)

while the actual displacements are given by the real an imaginairy parts of (4.23). For
large wavelengths (small k) the mode-frequency goes linearly to zero wy = clk|, k| —

0 with the sound velocity ¢ = ay/K/M - this is a very general behavior as we will see
later, and modes showing this behavior are called ‘acoustic modes’, ‘zero-modes’ or
‘Goldstone modes’.

Let us now consider the general case. We look for solutions of (4.20) of the form,
Una(t) = VUnae™ . (4.26)
Inserting (4.26) into (4.20) yields

1 — —
Wna = =D Vos(Ry — Ry Jvws - (4.27)
M oy

which amounts to an eigenvalue problem for the matrix V/M. The eigenvalues are
w? en the eigenvectors the w,,’s. Because of the translation invariance, we can look
for plane wave solutions,

Une = Va(K)eFE (4.28)

inserting this in (4.27)

oa() = 3 MW — B)eF Ry, )
g n
= ZDaﬂ k)op(k) . (4.29)

with the so-called dynamical matriz D defined as

-‘—

Dos(R) = S M Wo(Th)e™ : (4.30)
T
and the eigenvalue equation takes the simple form in terms of the matrix D,
w0a() = 3 Dag(Byus(F) (4.31)
B

Hence, for every k one has to solve this problem to obtain the mode spectrum - it is
the lattice vibration equivalent of the matrices giving rise to band structure of the
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previous chapter. An important difference with the quantum case is that the basis is
finite, and in fact rather small: the dimension of D is d X d (d is the space dimension).
From the definition of D it follows immediately that,

D(k) = D'(E) (Dis hermitian) |, (4.32a)
D(F) = D*(=k) , (4.32b)
D(k) = D(k+K) with K a reciprocal lattice vector . (4.32c¢)

— HKxcercise 4.3

D(E) has for every kd eigenvalues which are labelled by A

eigenvalues: w3(k) , eigenvectors: v)(E), A=1,2,---d . (4.33)
Because D is hermitian (the eigenvalues are real), while also va(K) = vt (—k),

Wi(F) = W3(-F)

va,(B) = va (k) (4.34)

and the eigenvectors can be choosen to be orthonormal .
3., .
Soup (k) va(k) = G - (4.35)

The eigenvectors of the dynamical matrix are called the normal modes.

We might as well write the Hamiltonian itself directly in a diagonal form. Knowing
the eigenvectors, we can define a canonical transformation, starting from u,, and
P’I'LOH

Una — Z elkR Z’U Q)\(k;) )

keleBzZ

Pr = \/_ T e Zv : (4.36)

keleBz

- 3=

to the new variables ) ,\(E) and PA(E). Because uy,’s and P,,’s are real,

DR = &E . AR = RBE (4.37)
Inserting (4.36) in the Hamiltonian (4.18) yields

B = =Y BERER + oM T EHARAH - (4.38)

EA

)

3The wavenumber & enters as a parameter and two eigenvectors with different k are therefore
not orthogonall
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H is brought in a diagonal form by using the ‘normal coordinates’ P and Q.
— Excercises 4.4, 4.5

This derivation is straightforwardly generalized to the case with more than one atom
per unit cell. The number of atoms per unit cell is n, and the position of atom s with
mass M, is indicated by R, = Ry ; + lns. (4.31) now becomes,

W5 (B) = 3 Dasps (K)vss () (4.39)
B,s'

and the dynamical matrix becomes

Dasﬂs’(lz) = ZM;IVasﬂs’(fn)e_iE.fn ) (440)
o

where the force constants are given by

%
Vnasn’ e B OF iua
g <8R31506Rn’3',{3) {R%s}

The dimension of the dynamical matrix is now dns X dn, and we expect therefore to
find dn, modes.

(4.41)

—> Excercises 4.6, 4.7

The Goldstone modes of the crystal.

Let us now consider the physics behind these mathematical manipulations. The im-
portant step is the assertion that the Taylor expansion (4.16) exists. The existence of
this expansion? is itself implied by the existence of the order parameter - the presence
of the order parameter required the existence of a well defined global minimum of
energy, and with ‘well defined’ we really mean that the expansion exists. In addition,
we introduced the additional assumption that the cubic and higher order anharmonic
terms in the expansion could in first instance be neglected. This is also an impor-
tant assumption, because the anharmonic terms cause the modes to interact with
each other (see also section 4.4). As a first effect of these mode couplings, individual
modes will start to decay in other modes and they will acquire a finite lifetime. If
the inverse of this lifetime becomes larger than the mode-frequency, the very notion
of propagating excitations looses its sense (the so-called overdamped regime). As
long as the mode frequency is the larger number one can still think perturbatively,
taking the harmonic system as zero-th order and treating the anharmonic terms to
cause corrections which do not change the physics fundamentally (the ‘underdamped
regime’).

The vast majority of the modes as they occur in nature belong to this approximate,
underdamped regime. They show up in avariety of experiments (such as inelas-
tic neutron scattering and Raman scattering) as sharp peaks in spectra which are

4The precise statement is that the total energy is analytic in the small displacements u around
the classical ground state - see also chapter VII
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measured as function of frequency for a given k. However, these peaks have a finite
intrinsic width and are in fact resonances: after a time inversely proportional to this
frequency width they have decayed into something else. Only in one limit the modes
become true in a rigorous sense: the limit of large wavelength and low frequency. The
modes occurring in this regime are called the Goldstone modes or zero modes, and
in the specific case of crystalline order, they are called acoustic phonons (or ‘sound
waves in crystals’).

The exactness of the modes in this limit is a direct consequence of the existence
of the order parameter, and they are always found regardless the precise nature of
the long range order. In fact, it is very simple to understand why the acoustical
modes become exact at low frequencies and long wavelengths. Let us first consider
the infinite wavelength limit: the displacements of all atoms are the same i, = 4*.
This corresponds with an uniform displacement of the whole crystal and this does
not cost energy, because the crystal as a whole is still subject to the full translational
invariance. In addition, this motion is also undamped for the same reason: the mode
with & = 0 has frequency w; = 0 and is exact®. One can directly count the number
of these modes: in d = 3 there are three modes, because the crystal can be moved in
three independent directions and in d dimensions there are d modes of this type (more
generally, the number of Goldstone modes is equal to the number of components of
the continuous symmetry group which have been subjected to symmetry breaking).

Let us now consider a finite, but large wavelength. We want to find out first why the
anharmonicities disappear in this regime. In the crystal, the interactions are short
ranged and it is easy to see why the harmonic approximation becomes better and
better if the wavelength of the acoustic modes increases. It is not so much the absolute
displacements which matter but instead the displacement of a particular atom relative
to that of its neighbours. The relative displacement behaves like du ~ 1/ for large
A. For instance, consider the simple example (4.21-4.25). As can be seen from figure
(4.2), the mode becomes a weaker and weaker perturbation if its wavevector decreases
and the harmonic approximation becomes increasingly better - for k—0it ‘merges’
with the zero-frequency mode which did not perturb the ground state at all. In
section 4.4 an explicit expression will be derived for the damping in the quantized
version of the theory.

For the same reasons, the frequency of the Goldstone modes approaches zero linearly
in k. This is proved as follows. To avoid indices, let us consider a mono-atomic
Bravais lattice in three dimensions. Because wy(k = 0) =0

0 = zﬂjDaﬂ(o)ug(o) : (4.42)

50One has to be careful. According to (4.30), Dag(k = 0) is a sum over the contributions of all
sites and it only exists if the potential falls off sufficiently fast as function of the distance R. In three
dimensions, it turns out that the potential has to fall off faster than 1/R. In crystals this is always
the case. This is not the case in for instance the charged Fermi-liquid (Coulomb interactions !) In
chapter VII we will see that in these cases the Goldstone modes acquire a finite frequency wy_,, # 0.
However, the lifetime approaches still infinity and this so-called plasmon is as well defined as the
phonons in this chapter.
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Figure 4.2: Indicated are the displacement patterns associated with the (longitudinal)
acoustic mode of a one dimensional chain for different wave vectors. One infers that
the differences in the relative displacement of nearest neighbour atoms (6u) becomes
smaller with increasing wavelength, to vanish at k = 0.

and therefore
Dos(k=0) = 0 . (4.43)
Consider now the limit kE—0

WERWAE) = 3 Dep(B)ujk) A=1,23 ,
B
= Y M W (To)e F (k)
T, B
1 I .
= 32T M Vap(T) e ® T + T — 9] ui(k)
T, B )

= -;- Z%:M_lvaﬂ(fn) :2 cos (1—5 : fn) - 2] U[}(E) ;
Tn

_ %ZgM—lvaﬂ(fn) :— (R-7.)° +0(E-T‘)4] A(F) . (4.44)

k is written as k{2, where () is a unit vector pointing in the direction of E, and we
define

Cap(k) = 2_5_11\7 (Do) (O T’ (4.45)

-

n

It follows that for small &
wik) = AWK (k < 2r/a) (4.46)

wx(k) = kex(Q) A=1,2,3 . (4.47)
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The three () are the eigenvalues of the matrix C (€2;) which only depend on the
direction of k. The c’s itself are the sound velocities and the sound velocity is an
anisotropic quantity in a crystal.

In crystals with one atom per unit cell, the three acoustic branches are all. The
acoustic branches become flat at large momenta and the dispersions tend to look
similar to the |sin(k/2)| dispersion of the simple monoatomic chain. In crystals
with larger unit cells, we already found that the total number of modes amounts
to nyd (ns number of atoms per unit cell, d dimensionality). The above discussion
shows that there are only d acoustic modes. There are therefore n,(d — 1) modes
with a finite frequency at zero wavenumber. These are called optical modes and
correspond with out-of-phase motions of the atoms within the unit cell (at least at
k= 0) (see excercise 4.7). As we already stated, the full mode spectrum can be
accurately measured, especially by inelastic neutron scattering. In addition, rather
accurate methods have been developed to calculate the mode spectrum, with as a
latest development that dynamical matrices are determined using the full machinery
of LDA band structure theory®.

4.3 Quantizing lattice vibrations: Phonons.

The essence of the previous section is, that in the harmonic approximation the low
frequency dynamics of the crystal is described completely in terms of an ensemble of
independent harmonic oscillators. For every k and \ the collective vibration can be
described by a pendulum with force constant ~ M (wy(k £))2. One should recall that in
the beginning of the previous section we have boldly switched off quantum-mechanics
- we should treat all motions of the atoms quantum-mechanically, including their
collective motions. A priory, there is no reason for the classical story of the previous
section to make sense.

As a lucky circumstance, the classical nature of the whole crystal (as opposed to its
collective vibrations) imposes the existence of the Taylor expansion for the potential,
including the theorem that the expansion gets better if the wavelength of the dis-
placement pattern gets larger. Hence, the Taylor expansion is also the proper starting
point for the quantum theory, at least as long as the long range order itself survives.
The quantum theory is also about harmonic potentials, and therefore about quantum
harmonic oscillators. It is a specialty of the harmonic oscillator that it is very easy
to quantize: the energetics can be directly taken from the classical problem. As we
will see, at the very last moment quantum-mechanics can be incorporated.

Although the mode spectrum (the w}’s) does not change, the physics does if the lattice
waves are treated quantum-mechanlcally. The modes are no longer just vibrations,
but become particles as well, which are called phonons. These phonons have an
intruiging resemblence with the force-carrying particles of field theory - the word
phonon should be understood as ‘sound like photon’. This analogy goes further. The

6See S. Yu. Savrasov, Physical Review Letters 69, 2819 (1992), and references therein.
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non-adiabatic corrections give rise to couplings between phonons and electrons which
look very similar to the minimal couplings of field-theory. Different from quantum-
elecrodynamics, the phonons also self-interact: the anharmonic corrections give rise
to phonon-phonon interaction terms.

Quantization of the lattice modes does more: it ‘changes the vacuum’, it is in fact the
leading order of the perturbation theory of section 1.2, which is a necessary step to
bring the classical ground state (the crystal of section 4.1) to the true, semiclassical
groundstate. The general structure of the theory as presented in the remainder of
this chapter is in fact tied to the existence of the classical ground state itself, and
is rather insensitive to the specifics of the state. The underlying, general scheme is
called ‘Gaussian fluctuations’ - Gaussian, because the modes are treated as being
independent. We will see it return a couple of times when the other condensates are
discussed.

Finding the normal coordinates.

The derivation of the quantum equations of motions from the harmonic Hamiltonian
(4.18) is quite easy. We again consider the monoatomic crystal. Momentum and
position become operators with the usual commutators,

h
[Pna; Pn’ﬁ] =0 y [unaa un’ﬂ] =0 y [Pnaa un’ﬂ] = génn’daﬂ . (448)

The quantum-equations of motion become (compare eq. (2.125)),

1 Pna
Ung = E [unau H] - ﬁ 3
N ]_ — —
Pna = E [Pnon H] == Z Vaﬂ(R?n - R?l’)un’ﬂ : (449)
n'p

and these equations are identical to the classical equations (4.19), except that they
describe the time evolution of operators. We learned how to handle these equations
in section 2.4: it amounts to diagonalizing the Hamiltonian. We first do the transfor-
mation to the normal coordinates and this is identical to the transformation used in
the classical case (4.36), because of the similarities of the equations of motions - this

is a specialty of the harmonic problem. The only difference is that the new Py(k)’s
and Q) (k)’s are still operators, obeying the commutation relations,

(PA(B), Pu(R)] = [@a(R),Qu(F)] =0
[PA(E)7QA'(EI)] = %6”’61&5’ . (4.50)

The new operators are equally good momentum and position operators as the old ones
- transformations like (4.36) do not change the algebra (section 2.4). The quantum
Hamiltonian becomes (4.38), with the P’s and @’s obeying (4.50): this describes now
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an ensemble of non-interacting quantum oscillators, each having an effective force
constant Mw?(k).

Phonon creation- and annihilation operators

To diagonalize the Hamiltonian (4.38) we simply have to diagonalize each of the
oscillators independently and we learned to do this in section (2.2). In direct corre-
spondence with Eq.’s (2.42), (2.44) we define creation- and annihilation operators,

Mu))\( ) 1

ber = \ —22Qu (k) + mf’,\(—k) ;
P | Ma®),  m 2
by, = \"2n Qx(—F) 2M7w,\(E)PA(k) : (4.51)

The commutation relations become,
— A st t —
lbenbion] =0, . [pk.oL] =0, [bn bLy | = Szpdan (4.52)
and the Hamiltonian is,

1 -,
Z hug, (bL, b, + 3 wiy = wa(k) (4.53)

= KExcercise 4.8

As in the case of the M — oo crystal, there are d (or dn, in the general case) different
vibration modes with frequencies wA(E). The difference is that the amplitudes of the
vibrations are now quantized in bosons carrying each an energy th(E). These bosons
are the phonons. The ground state of the crystal has changed as well by the simple
manipulations (4.51-4.53). Although the phonon states are all unoccupied, we have
build a zero-point motion of the atoms into the ground state which is driven by the
collective vibrations. For instance, the energy is increased by the zero-point contribu-
tion AE¢aussian = %Z,ﬂ,,\ th(E). Because the energy has changed, the ground state
wavefunction should also be different. We will take up this theme again in section
4.6.

The Debye model.

Dealing with quantum-mechanical excitations, one likes to know the density of states.
The phonon density of states can be calculated in the usual way (units i = 1),

Z / . (4.54)

IkaA k)|

1/|Vsws(k)| is the distance between the surfaces in k space following from the con-
ditions wy(k) = w and w,(k) = w + dw and the integral over the surface area (dS)
yields the volume enclosed by the two surfaces. In addition one has to sum over the
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different modes ()\). A number of finite temperature properties are related to the
density of states, weighted by the Bose factor: ~ [ dwg(w)ng(w), where

1

T (4.55)

np(w) =

— Excercise 4.9

Real phonon dispersions and densities of states tend to be rather complicated. At
least in the limits of high- and low temperature one is not interested in all this
information and instead one can come quite far with very simple models. In the
high temperature limit, all the details are washed away by the Bose factor and many
properties are only sensitive to the first moment of the phonon density of state wg ~
[ dwwg(w). To good approximation, one can assume that the lattice vibrates at a
single frequency (wg): this is the Einstein model.

In the low temperature limit, only the acoustic phonons matter and this allows for
considerable simplifications as well. Next to neglecting the optical modes alltogether,
in the Debye model the assumption is made that the sound velocity is isotropic in
space. As long as one is not explicitely interested in measurable effects of spatial
anisotropy in he crystal, this is a very reasonable thing to do - the sound velocity in
the Debye model is just the angle average of the real velocities (4.47). The dispersion
relations are approximated by

wr(k) = clk| , A=1,---,d . (4.56)

To normalize, one assumes that the allowed wavevectors k lie within a sphere of radius
kp, containing N k points. In three dimensions,

4 LN?

Sk (5) = N .

3™kD | 5 (4.57)
Because N/L? = n; (the density of atoms),

kp = (67%n;)Y3 . (4.58)

kp has the meaning of an ‘ultraviolet’ cut-off momentum: the largest momentum
carried by a phonon is of order kp, given an ion density n;. This also defines the
cut-off frequency (the ‘Debye frequency’) and the associated Debye temperature,

wp = CICD )
@D = th/kB > (459)

Under the rule of the Goldstone theorem, the low energy asymptote of the excitation
spectrum has to be dominated by the zero-modes, in this case the acoustical phonons.
For this reason, the low temperature properties in so far they are caused by the lattice
show an wuniversal behaviour, because the zero-modes are universal, and the Debye
model is good enough to catch this universality. For instance, the specific heat of a
d-dimensional crystal behaves like ¢, = AT - although the prefactor (A) depends on
kp, the exponent depends only on the dimension of the space in which the crystal
lives.

— BExcercises 4.10 and 4.11
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4.4 Anharmonicity: phonon-phonon interactions.

I have stressed several times that the assumption of harmonicity (the necessary condi-
tion for the existence of modes) becomes rigorously correct only in the limit w, & — 0.
At finite frequencies, the anharmonicities always play a role. Aslong as their strength
is small, their effect can be treated using perturbation theory: this is nothing else
than doing the next orders of the perturbation expansion ‘around’ the classical state.
The main effect will be that one particular mode can decay in other modes, giving it
a finite lifetime 7. As in the classical case, the phonons are no longer precisely defined
objects: they are more like resonances in the continuum of true many atom states.
All you know for sure is, that after an infinite time the system will have relaxed into
a state which is again completely specified: infinitely many, infinitely low frequency
zero-modes. Nevertheless, as long their inverse lifetime (the width of the resonance)
is small, these decaying phonons are still quite usefull to get an accurate picture of
reality. In essence, their ‘non existence’ is irrelevant for the questions which really
matter, like the question after the existence of the crystalline condensate.

There is one lifetime issue which really matters: does the zero-mode become infinitely
long lived if its wavelength approaches infinity? If not, there could have been some-
thing really wrong with our assumption that the crystalline state exists: perturbation
theory knows about wrong ground states. More precisely, the limit & — oo has to be
well behaved, in the sense that the energy of the excitation w ~ ck should go to zero
slower than the inverse lifetime dw ~ 1/7 (all in units of /). We will actually find that
dw ~ k%% (d is dimension) and because the d + 2’th power of a very small number
is of course much smaller than the number itself, the zero modes are ‘well behaved’.
What follows is a first example of testing condensates by perturbation theory.

Phonon-phonon interactions.

Let us consider the structure of the perturbation theory beyond the Gaussian (har-
monic) order. The existence of the crystalline ground state implies that the potential
can be written as the Taylor series (4.16),

A= By 4 Hst Byt e (4.60)

where Hyorpm is given by (4.53) and the leading order correction is given by the cubic
term,

A~

1 B o 5
Hy = 3! Z Z Z unaun’ﬂ“n”vva,ﬂﬁ(R?w N )

*na p!fally
*V )
6Rnaaﬁﬂ’ﬁal?fu” ¥ { RO }

Va R’O’EO,,R’O” == 46]_
5y (3 7 T

As long as the displacements are small, one expects the effects coming from H, to
dominate over the higher orders in the expansion (4.60)". In the spirit of perturbation

"One has to be careful: (i) For u — oo E},; — —o0 and the neglect of the higher order terms only
makes sense if the u’s are small enough. (ii) Sometimes it happens that the kinematics (conservation
of energy and momentum) limits the number of allowed third order scattering processes to such an
extent that the fourth order terms yield a larger net correction.
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theory, one now expresses the correction term H; in the eigenstates of the zero-
th order Gaussian problem Hj,.,,. The Hilbert space is therefore spanned by the
complete set of oscillator states, in occupation number representation,

| {n,;/\} > Npy = 0,1,2,--- (4_62)

=— Excercise 4.12

According to (4.36), the displacements u are written in terms of the normal coordi-
nates as

Upe = __Zeiﬁ-ﬁgngA(E) . (463)

To quantize the @’s, we have simply to invert (4.51),

h

s (B + B o) 4.64
2Mw>\(k)(k)‘ —k*) (4.64)

(k) =
and it follows that the displacements are expressed in terms of the boson Heisenberg
algebra as,

eik-Eny ber + ) (4.65)

\/ A 2M w,\(k) (
Substituting (4.65) into (4.61) yields an expression of the anharmonic term, in terms
of the phonon creation and annihilation operators,

T, = t f toogt
H3 - . _Z . ‘/)‘1)‘2>‘3 (klekS) [ b k A3 —kzkzb—lﬁ/\l + b—E3A3b—EZA2bE1A1
kiAikadoksAs

t - b = b b
+ b—ElAl bkz)\z bk3>\3 + bk1>\1 bk?2)\2bk3)\3 ] (466)
Because of translational invariance, Va,ﬂ,ﬂ,(R Rn,, RY) = Va,p.( Rt — Rg,, , ﬁg, —R%)
and it follows that crystal momentum is conserved,

Hy= Y Vi GR) [Bh b o) bpy + Bh 0o big | (467)

—

k@K 02,28

where we neglected the terms ~ bbT6" and bbb because they play no role in the lowest
order perturbation theory we will consider next. The matrix elements are given by
the rather formidable expression,
2. R) i O
Viaa(k @ K) = e
: 31(2MN)3/2 nom 'y
Alv;;?vf;ava 8, 7(R Rn,,

Ve (F = Qs (7+ B )wyy (F)

RO Je i((k—q)- RS +H(a+K) R0, +k-R2,))
(4 69

\I-U\J
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— KExcercise 4.13

The lifetime of the zero-mode.

What does (4.67) phys1cally7 Take the term ~ bibTd: it means that initially the
phonon with wave number k is annihilated, while two new phonons are created In
other words, the k phonon decays into a pair of phonons with momenta k— ¢ and ¢,
modulo the umklapp K. We can draw a diagram for this process,

Figure 4.3: ‘Nursery school diagram’ of the decay of a phonon in other phonons, due
to the anharmonicity of the crystal potential.

In order to pursue the perturbation theory systematically, one needs the Greens
functions and diagrams which are introduced in chapter VII. However, as long as we
do not want to know more than the decay rate of the phonon up to second order
in _Hg, we might as well use Fermi’s golden rule. A decay rate (or energy spread) is
according to the golden rule given by

Gy~ Tl Hoedl FYPO(E; — ) (4.69)

The initial state |¢) is the state with a single phonon occupied with momentum k
and energy E; = wy, (k) and the final states |f) are the two phonon states, with
one phonon at k- ¢ and the other at ¢, and energy E; = w,\Q(E — @) + wx, (@), In
addition, the two emitted phonons have to be real, and therefore the total energy of
the final state has to be equal or less than the energy of the initial state E; < Fp.
For an arbitrary phonon, (4.69) is rather hard to evaluate because one needs detailed
knowledge about the matrix elements (4.68), as well as the full phonon spectrum, and
these are not easy to calculate. This is different for the decay rates of the zero-modes.
The qualitative behaviour of their decay rate is again universal.

Since spatial anisotropies are irrelevant, as are the optical modes, we adopt the Debye
model. In addition, to keep the calculation as transparent as possible we omit all
prefactors - these do not matter either and can be determined by experiment. In the
isotropic case we can drop the A and « - - - labels in (4.68) and Umklapp does not play
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a role in the k — 0 limit. In addition, we can expand PR N ik - R (k is the
radial component of k and €, the directional unit vector) and because the matrix

— -

elements (4.68) are only non-zero if all space components R, R, RY, appear in the

sum, (4.68) simplifies in the long wavelength limit to,

V(Qkaﬂq)km - (ﬂq

(chwuz_ﬂwq)m

— V(0 Q) kI — dlg (4.70)

where we used the Debye dispersion w; = ck. In addition, the energies of the initial
and final states are F; = ck and E; = ¢|k — q|+cq and it follows from (4.69) that the
decay rate of an acoustic phonon with momentum k in d dimensions is proportional
to,

Vz\l)\z)\s (E7 q—')

k N N = -
surg ~ [ 7 V@, Q) HIE— dla 30+ I~ F ~ B) (e71)

This is a simple example of the type of integrals one frequently encounters in per-
turbation theory. Since the interest is in the radial part, it is easy to handle by
‘power counting’. One splits all momenta in a radial and angular part ¢ = qflq and
diq = q*dqdS),, one scales out q by ¢ = ¢k and because §(az) = (1/a)d(z), (4.71)
becomes

Swp o~ A(Q)k?
i S A N O .
AQw) ~ [ dq [ a0 V() [0 - Quld 1 - 7 |0 - Qual)  (472)

Hence, the decay rate goes to zero as k%2 in the long wavelength limit and the
acoustic phonon gets better and better defined if its wavelength increases, to become
‘exact’ if its energy is infinitisimal. One could now argue that the above is only
a rather naive second order calculation and that one cannot be certain that some
high order contribution behaves in a more harmfull way. It turns out, however, to
be possible to proof that the higher orders only contribute terms in the decay rate
which fall off more quickly than k%2, and these are therefore always less dangerous
than the second order contribution. Although one needs the full machinery of field-
theoretic perturbation theory to deliver these proofs®, with the simple machinery we
use here one already sees the principle at work. From (4.71) it is clear that the theory
becomes ‘less well’ behaved if one lowers the dimensionality. However, on the second
order level there is even in one dimension no reason to worry about the stability of
the condensate. As will be demonstrated in section 4.6, we actually overlook here
the fact that the one dimensional crystal has already been blown into pieces by the
Gaussian fluctuations!

= Hxcercise 4.14

81 am actually not aware of such a proof in the context of crystalline order - it has been delivered
in a more complicated context, see chapter VII.
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4.5 Non-adiabatic corrections: the electron-phonon coupling.

We started out assuming that the lattice dynamics could be decoupled from the elec-
tron dynamics because the typical electron moves much faster than the typical ion.
Although this is definitely true for the vast majority of the electrons, it is not true
for a small fraction of electrons which are very close to Er. For these electrons,
non-adiabatic effects become quite important and one is faced with a ‘mixed’ dynam-
ics. Although in many cases one can still get away with perturbation theory, I will
highlight a simple case where this is not true: the polaron.

The electron-phonon interaction.

Let us write the electron-lattice coupling in terms of the phonons. This follows the
same pattern as in the previous section. The fundamental electron-ion coupling can
again be expanded around the crystalline state. In the spirit of the pseudopoten-
tials (chapter III), one can first fill up the atomic cores, ending up with an effective
electron-ion interaction,

Vie({Bn, 7)) = D3 VI(Fi— Rn) . (4.73)
i N
and this is expanded, as usually, in terms of the displacements u,,,

Vil{Rn, 7)) = SN V(A - R =Y - VaV(F — B2+

)

~

U)o+ e (4.74)

The first term is the static lattice potential which gives rise to the band structure, and
the second term describes the lowest order contribution to the dynamical coupling
between the lattice and the electrons. With the exception of the polarons, this lowest
order term is far more important than the higher order terms, much in the spirit
of the previous section. Also in this case, the subset of phonon-like motions of the
lattice are the most important ones. To profit fully from the periodicity of the lattice,
1t 1s convenient to span up the Fock space of the electrons in terms of single particle
Bloch states {CIEJ’ ¢inye }- The total Hilbert space becomes the product space of the
electronic Fock space |{ng, }) and the phonon Fock space |{ng }). In order to evaluate
the first order term in (4.74), one needs an electronic part

ViV(ii - B) = Y (Ko|Vav(ii - B)lko)el, e, (4.75)
kk'c
Using (4.65), the first order electron-phonon coupling is written as,

He—ph — ﬂ_‘z M)\(K, ]{:, (j') CIJ[c‘+(T+I_(‘,UCEfT (bf_q‘)\ + bq‘)\) (476)
K.k,q@\

— Excercise 4.15

One can draw the following ‘diagram’,
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k-q

Figure 4.4: ‘Nursery school diagram’ of the electron (‘full line’) emitting or absorping
a phonon (‘wiggly line’).

This looks similar to the minimal coupling between fermions and gauge particles
which is one of the axioms of elementary particle theory. According to field theory,
the interactions between the fermions are caused by virtual exchange of photons,
etcetera. Our ‘wiggly lines’ (which can also be other modes) also mediate interactions
between the electrons in the solids, with the specialty that they can cause attractive
interactions, as will be discussed in Chapter VI.

Model interactions.

It is usually very hard to calculate the electron-phonon matrix-elements. As always,
to study qualitative effects one can get away with simple models. One extreme is
that perturbation theory works well in terms of the Bloch states: this is usually the
case in metals and semiconductors. In these cases, one is interested in electrons very
close to Er behaving as nearly free electrons and the following model works very well

Hoogn = MY pa(bloy + 050 (4.77)
72
where
Pr = 3k 0o (4.78)
ko

measures a density wave in a jellium with a wavevector ¢. Except for momentum
conservation, further momentum dependences of the electron-phonon coupling are
neglected.

= Excercise 4.16

Non-perturbative effects are often associated with rather tightly bound electrons
(strong lattice potentials !) and these effects are usually adressed starting from the
tight-binding like Peierls- and Holstein models. In the Peierls model it is assumed
that the electrons couple to the phonons, because the latter modulate the bondlengths
and thereby the hopping matrix elements. We learned that the hopping elements be-
have like t ~ 1/d* (section 3.3). Expanding the length of the bond between the sites
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iand i-6 as dzy = dg.? — uzz and defining the equilibrium hopping as tg;) ~1/ (d(o))%,
the hopping part of the Hamiltonian can be written as,

i, = S0+ aug)el ez, (4.79)
o
and the displacements uz; are ‘phononized’ as usually. The Holstein model is even
simpler. It is assumed that the diagonal energies are modulated by the lattice vibra-
tions,

Z g1+ qu)hz, + Y tlgcwcl”a (4.80)

io oo

How can this happen? One should imagine a system with more than one atomic
orbital per unit cell, and |¢ > is some linear combination of orbitals on different
atoms within the unit cell, which ends up having an energy close to Er. If one
now modulates the structure within the unit cell, the level position of the hybrid
orbital will also change. For this to happen one needs optical phonons (out-of-phase
vibrations within the unit cell), and optical phonons usually disperse little. Hence,
one can take as well a (Einstein) phonon which is localized within the unit cell (bT)
Including this phonon,

H = Z [eﬁga 4 Mﬁgg(b% +b:) + wb}b;] +1 Z (c%rachgg + h.c.) (4.81)

3 di
e 1,0,0

where M = aey/h/Mw. Notice that in the case of the Peierls model one needs more
realistic phonons for the model to make sense.

— HExcercise 4.17

Strong coupling: small polarons.

It is actually not at all true that the adiabatic approximation is a good one under
all circumstances. In fact, it is because of non-adiabatic ‘corrections’ that practical
electronic insulators exist. Perfect crystals can be band insulators. However, practical
insulators are usually littered with defects, and defects cause free charge carriers.
Why are these free carriers deemed to be immobile in practical insulators? It turns
out that such a carrier dresses itself up with a lattice distortion, and this bound state
of hole or electron and its lattice ‘polarization cloud’ is called ‘polaron’. In order to
move, the carrier has to drag around pieces of the lattice and this makes the polaron
very heavy. The bandwidth associated with the polaron motion becomes small and
even weak static- or thermal disorder causes a complete localization. Even for the
case of a single carrier, the theory of polaron formation is not completely known.
However, the story becomes simple in some limits, and especially the limit where the
lattice is strongly deformed is quite informative. In this limit, the object is called the
‘small polaron’ and the Holstein model (4.81) is taylored to clarify its physics.

If one expects that the interactions dominate, it is always a good idea to first consider
the classical limit, which is reached by neglecting the kinetic terms in the Hamiltonian.
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Therefore, we put ¢t = 0 and the atom mass M — oo in (4.81). The classical energy
is then given by (the force constant K = Mw?),
. I
Eo =) [5(1 + auy)nz + Dl (4.82)
where 7 is now either 0 (singly unoccupied), 1 (occupied) or 2 (doubly occupied),
because the electronic problem is diagonal in the site basis. We consider one electron
which is localized at a particular site 7. The energy becomes,

K K
Ecy = e(1+ auz) + 5%% + 5 > ul (4.83)

This energy is minimized to all u’s and we find all displacements to be zero except
for u‘l = —ae/K. We substitute this back in (4.83) to find that the ground state

energy becomes Eg = ¢(1 — ‘z‘jg ). Hence, the localized eleciron has deformed the
lattice (u; # 0) and thereby gained a ‘polaron binding energy’ B,y = €*a? /2K, for
the su‘np]o reason that the electron-phonon energy decreases linearly in v while the

restoring force grows only quadratically.

This simple story is the essence of the polaron idea. The problems start if one tries
to treat this problem quantum-mechanically. As long as one can stick to the gaussian
order (somewhat questionable in this context, because the local displacements tend
to be large), the lattice kinetic energy does not pose much of a problem. In first
instance, we are interested in the low electron density limit, and the classical polaron
is characterized by a length scale: it is localized within the unit cell. It is expected that
the quantum polaron will also be characterized by a length scale: only a small part of
the lattice in the direct vicinity of the electron is altered, and the crystal as a whole
will stay intact. Hence, at least in the low density limit, polarons cannot destroy the
crystalline condensate. In addition, the phonons exhibit again their pleasant habit
of not alterning their energetics under quantization, and taking a finite atomic mass
yields the same answer as in the classical case.

= Hxcercise 4.18

The problems start if the quantum mechanics of the electron is reinstored - finite .
This will tend to spread out the electron. In the case that the hopping ¢ >> Fy it 18
clearly not a good idea to completely localize the electron, and if the electron is not
localizable, it is no longer possible to gain the polaron energy. Hence, eventually the
electron will loose its polarization cloud alltogether. One expects that in this limit the
electron-phonon effects can be taken into account perturbatively, to find small shifts
and broadenings of the bare electron Bloch states. Although the strong coupling
(classical) and weak coupling (nearly non-interacting) limits are easy, it turns out
that the regime in between is very difficult and despite a very large effort which
started already in the fifties this problem is still unsolved. To get some feeling, it
is interesting to approach this difficult intermediate coupling regime from the strong
coupling side: consider the electron hopping as the small parameter in the problem.
What follows is an example of the technique of ‘strong coupling perturbation theory’,
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which we will encounter more often in the course of these lectures. We start out
taking the problem (4.81) with ¢ = 0 as a zeroth order, to subsequently consider the
hopping as a small perturbation. We consider (4.81), omitting the hopping term, and
we try to find a transformation e, with St = —S, which brings this Hamiltonian in a
diagonal form in terms of new localized electron-like objects ¢! and modified phonons
b,

Hy = 3 [efig+ Mig(bl +by) +wblb]

HO = €SH0€_S
- ¥ {Z e'el &, + w’B}E;} (4.84)

b

7

Notice that this ‘canonical transformation’ lives entirely in operator ‘space’ - it is
actually not so easy to imagine how to execute this transformation directly in Hilbert
space. We need three useful properties of this transformation:

1 The transform of a product of operators is the same as the product of trans-
formed operators,

eSABC---¢™® = ABC - -- (4.85)

We need this for the next theorem:

2 Transforming an operator function which can be expanded as a power series
in terms of the operators yields the same function in terms of the transformed
operators,

e’ f(A)e™ = f(A) (4.86)

This is useful, because the new Hamiltonian will be the old one with the new
operators.

3 The transformation can be written in terms of commutators as,

A= AdeS = A+ [S,4] + %[S,[S,A]] b o (4.87)

—> KExcercise 4.19

In the next chapter it will be shown how to determine S from the requirement that
it should diagonalize the Hamiltonian. We save us the effort here, and we conjecture
that

S = —chlgc;g%(b}—bg) (4.88)
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will do the job. According to theorem (4.86) we can first transform the fermion- and
boson operators. Using (4.87),

g = o8
& = ¢b;
. M
b= b+ =Y e
(2 1 w pu g
. M
bzv = b; + — Z CI Ciy (489)
w p g
introducing the operator
T b
By=e¢ w0 (4.90)

We leave it to the reader to show that the Holstein Hamiltonian without the hopping
term becomes in the new operators,

H =Y |(e6—Eu)d el &, + whl; (4.91)

B

)

Although (4.88) does not diagonalize the electron hopping term of the full Hamilto-
nian, we are of course allowed to express the hopping in the new fermions,

HA-t - t Z c;a'c'_b“i‘gﬂ'
o
] — =f = T
o

—> Excercise 4.20

What is the physics behind the above manipulations? The transformation (4.88-
4.91) is the phonon equivalent of the simple classical procedure (4.82-4.83). As long
as the electron is classical (localized on a site) there is virtually no difference in
outcome - as said before, this is related to the peculiarity of harmonic oscillators
to not change the energetics under quantization (excercise 4.18). In terms of the
algebra, the phonon is simply ‘shifted’ b — b+ constant. All the effort (4.84-4.92)
was needed to keep track of the electron: the & creates an electron together with its
classical-like lattice polarization cloud. ¢'’s are therefore the lattice-quantized version
of the simple classical polarons, (4.83). This lattice polarization cloud is created by
the operator B! (4.90). The ‘bare’ boson operators appear exponentiated in this
expression. The reason is that every phonon represent an infinitisimal displacement
of an atom, and an infinity of phonons has to be excited to create the classical-like
finite local displacement®. B can be written as a power series,

M 1 .M

Bl =14 220 — b))+ = (2520 — )2 ... 4.93
; +w(l z)+2!(w)(l )+ (4.93)

°Tf one lets such an operator act on the QED vacuum one creates states corresponding with the
coherent states as they were originally introduced in quantum optics.
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The n-th power of this series will contribute terms like (bzi)", and one infers that BT
excites large numbers of phonons if the coupling constant M /w becomes large.

These infinities start to play a role if the electron becomes quantum-mechanical (¢ #
0). By inserting (4.93) in the expression (4.92), one immediately sees that every
hopping event of the polaron is accompanied by excitation and deexcitation of large
numbers of phonons on both sites. Only one limit is easy. When ¢ is very small
compared to the polaron binding energy the hopping cannot change much in the
phononic part of the polaron which is centered either on the 7'th or on the 7 + 8'th
site. One can now consider the phonon clouds to be rigid and it is easy to deduce an
effective tunneling rate for the polaron as a whole. According to (4.92) this should
correspond with ¢ multiplied by the overlap of the phonon clouds, which is easily
calculated to be,
Hyppoo =~ tY (01Bs;Bl0)E - &,

e

(M2 -
= e VY e (4.94)

ibo

The vacuum |0) > is the vacuum on which the barred operators are defined (;]0) =
0,]0) = 0). The polaron hops with a rate which is reduced by a factor exp(— (M /w)?)
compared to the bare electron, and this rate gets very small if the electron-phonon
coupling is large - the electron has to drag round a piece of the crystal when it hops
and this tends to localize the polaron.

— Excercise 4.21

When t becomes of order of the classical polaron energy, the above picture breaks
down because of the avalanches of multi-phonon excitations. I repeat: if ¢ >> E,,
the classical localization ends because it costs an energy ~ t to localize a particle on
one site. Starting from the large ¢ limit, it is much better to use the propagating
electron states as the zero-th order, using the electron-phonon coupling as the small
perturbation. As said, the outcomes are unremarkable.

Electron-phonon coupling in metals.

It is a prerequisite for the understanding of the workings of the electron-phonon cou-
pling in the metallic state to understand the metallic state itself, which is the subject
of chapter VII. In addition, one needs the convenience of diagrammatic perturbation
theory (also explained in chapter VII) to appreciate the subtleties of the problem. Let
me here only comment on the obvious question: why is the polaron mechanism usu-
ally not active if the system is characterized by a high density of electrons? Clearly,
if the above polaron mechanism would be active always, one could wonder why the
metallic state exists at all. The answer is actually rather straightforward: it is the
Pauli-principle. Electrons in metals are characterized by an enormous energy scale
for their zero point motion, the Fermi-energy. In order to localize all the electrons,
the polaron binding energy has to exceed the Fermi energy and in a typical metal
this will never happen. The Fermi energy is like 5 eV while the (classical) polaron
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energy is typically O(0.1) eV. In addition, a second time scale plays a role: the typ-
ical (Debye/Einstein) phonon frequency w,. This is again much smaller than the
typical Fermi energy (< 0.1 eV). As will be further discussed in the context of super-
conductivity (chapter VI), one should compare this with the energy of the electrons
relative to the Fermi energy. Only the electrons in a small shell with width w, around
the Fermi energy are moving slower than the lattice. The vast majority of electrons
therefore moves much faster than the lattice, and this guarantees that the lattice can
be considered to be static. Only the electrons very close to Ey are subject to non-
adiabatic effects. The most important of these effects is the attractive interactions
between the low lying electrons, caused by the virtual exchange of (fast) phonons,
which is the driving force behind conventional superconductivity - see chapter VI.
The crystal itself, on the other hand, is not affected: one can calculate again the
decay rate of the zero-modes due to the creation of electronic excitations, to find that
this vanishes sufficiently rapidly approaching the long wavelength limit.

What happens if Er ~ E,,? This is actually a subject of active research. Starting
from the classical side, polarons would occur at a relative high density. Recently,
evidence has started to accumulate that the physics is much richer than either the
single polaron- or the metallic limit. Apparently, the electrons (accompanied by their
polarization clouds) have the tendency to form intricate patterns which themselves are
strongly fluctuating, and it is believed that this kind of physics could be responsible
for the anomalous behaviour of for instance the high T, superconductors!®. In this
regime, it is even not clear if the atoms are in a true crystalline state. The atoms
seem to fluctuate in a way which cannot be explained in terms of simple Gaussian
theory'!.

4.6 The stability of the crystalline condensate: quantum
melting.

What has happened up to now in this chapter? The argument started with the
assumption that the crystalline condensate exists. This we found quite reasonable,
because nature is doing it all the time. The existence of crystalline order tells us
immediately how to construct the wavefunction: the ‘ansatz’ (4.7) should have a
finite overlap with the true wavefunction of the crystal. In the process of constructing
this ansatz we became aware that the way we intuitively handle the crystalline state
is not unproblematic. By its very nature (localized atoms), it is violating the basic
principles of quantum mechanics. Subsequently we found out that the mere existence
of crystalline order allowed us to make non trivial statements regarding the long-wave
length properties: if the crystal exists, a global minimum of energy exists, implying
that the Taylor expansion exists, implying that zero-modes exist. We investigated
whether this construction is at least internally consistent. Perturbation theory is a

10Gee, e.g., J. Zaanen and P. B. Littlewood, Phys. Rev. B 50, 7222(1994); J. Zaanen, M. Horbach
and W. van Saarloos. Phys. Rev. B 53, 8671 (1996).

HUT, Egami and S. L. J. Billinge, in ‘Physical Properties of High temperature Superconductors’,
D. M. Ginsberg (World Scientific, Singapore, in press).
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way to investigate the stability of the (semi-classical) ground state and a divergent
term in the expansion would signal a serious problem with the starting assumption
of the existence of the minimum. Up to this point, this looked fine: it is a necessary
condition for the classical state to exist that the zero-modes live infinitely long, and
we found that neither the electron-phonon nor the phonon-phonon corrections could
change this.

Actually we were a bit too hasty. Perturbation theory has the pleasant habit to
diverge in the lowest order, if something is wrong. Calling the basic act of quantizing
the modes a ‘perturbation theory up to Gaussian order’, the electron-phonon and
phonon-phonon couplings represent a first- and second order correction to this order,
respectively. However, already in Gaussian order we started to dress up the classical
state with fluctuations (adding the |®;)’s to the |®%,)’s), and we did not investigate
yet whether the expansion in this lowest order is healthy. It turns out that the
pathologies appear in this order. It will be shown that sufficiently strong microscopic
quantum fluctuations will always destroy crystalline order and this will be illustrated
in the context of the heliums. More beautifully, it turns out that dimensionality
yields real control. It is easy to prove that the crystalline condensate never exists in
one space dimension, while it can only exist in two dimensions at the absolute zero of
temperature. As long as the microscopic fluctuations are weak enough, another state
will take over: the floating solid. The one dimensional, zero temperature floating
solid is the simplest of all non-classical states and it is the only non-classical state
which will get some exposure in this text.

The argument which follows is originally due to Landau and has been further elab-
orated in the context of statistical mechanics (thermal fluctuations) by Mermin and
Wagner, where it is known as the ‘Mermin-Wagner theorem’. The essence is very sim-
ple: zero-modes are an inescapable byproduct of the order and by doing the simple
quantization procedure of section 4.3, these zero-modes dress up the classical state.
In doing so, they produce infinities in low dimensions which are caused by the longest
wavelength (and therefore best defined) modes. We have not seen this yet because
we did not ask the right question.

Melting criteria.

The question is after the mean square fluctuation of a particular atom around its
equilibrium position. For the crystal to exist, this fluctuation should at least be finite,
and even be small compared to the lattice constant. The mean-square fluctuation is,

(0F2) = 2 | unal® 1)

«

= LSRR S B EEQE)) (4.95)

B AN

We have to calculate the expectation value (|Qx(k)Q% (5)|) and we have learned how
to do this. We again use @ ~ bl + b (4.64) and we have to evaluate expectation
values of the form (|(bg, + bT_EA)(b_,;,A, + b;%,l\,)l). In what follows, we really need the
zero-modes and for those we can ignore mode-couplings alltogether. In the absence
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of phonon interactions, the problem is diagonal in the Fock space spanned by the
single phonon states,

ny ng
LI b;Te‘l"' IT %2, bl’%z e lvac) = |, ng, ) (4.96)
and this implies,

<|(bEA + bT_E)\)(b P\ + bk/)\)|> = <|bJr E)‘b—IZ)\ + bEAb£A’>5E I_c"d)\,/\’

= (1 —+ 2nB(ﬁw,\( ))) (Sk'k-', (5)")‘! (497)
with the Bose-factor (8 = 1/kgT),
1 -,
Tl )= —
(8, 051) = e = s (Br(F) (498)
=> Excercise 4.22
From (4.64), (4.97) it follows,
P
— wr(k)) + —) 4.99
< (R ZMW (mBon(F) + 3 (4.99)

This is an important result. It tells us that the position uncertainty of a particular
atom is caused by the quantum-mechanical admixing, or thermal occupation, of the
collective excitations of the whole system. The sum in (4.99) is actually dominated by
the long wavelength zero-modes, corresponding with the ‘most’ collective excitations
of the system. Let us first focus on the one dimensional case at T' = 0. We make
the Debye assumptions (4.56-4.59 ) and we consider the relative fluctuation (a is the
lattice constant),

§R,)?
o = a2)> (4.100)
kp
L & dk
- Nira?cM | & i (1.101)

The perturbation theory blows up because of the ‘exact’ long wavelength fluctuations,
and the crystalline order can therefore not exist in d = 1!

k
What happens in higher dimensions? At T = 0, the integral (4.99) behaves as fD ki-2
0

and this is convergent if d > 2. It is now a matter of numbers whether the crystal

survives the quantum fluctuations. The fluctuation should be a fraction of the bond

length, v < 1, and we find that the magnitude of gamma is controlled by the prefactor,
h

= — 4.102
M dra2eM (4.102)
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which is called the ‘dimensionless quantum of action’ (or ‘coupling constant’), k
dressed up with the dimensionful parameters of the problem, to yield a dimensionless
number. These numbers depend on the microscopy.

What happens at finite temperatures? Because zero modes extent all the way down to
zero frequency, there will always be modes with an energy smaller than temperature,
and we can therefore approximate ng(hck/kgT) ~ kgT/hck if we are interested
in the small £ behaviour. The integral behaves therefore at finite temperature as

kp
[ k%3dk: it seems as if the thermal fluctuation is one dimension more ‘dangerous’

0
than the quantum fluctuation'?. One concludes immediately that condensation at any

finite temperature is not only impossible in d = 1, but in two dimensions as well: the
Mermin-Wagner theorem. In addition, one expects that the two dimensional thermal
fluid will bear some similarities with the one dimensional quantum fluid.

Although there is no theorem saying that crystals in d = 3 should melt always, we
know from experience that eventually every solid will melt if the temperature becomes
high enough. The details of this melting process are usually rather complicated. The
above Gaussian picture definitely falls short - it is actually much better to think that
the melting transition is driven by a proliferation of dislocations'®, instead of the
above population of modes. However, dislocations are more easily created in crystals
which are already subject to large uncorrelated thermal motions for which the modes
are responsible. This rationalizes the success of the so-called Lindemann criterion.
This is an empirical law saying that if the root mean square thermal fluctuation as
calculated from (4.99) becomes of order of ~ 0.1 —0.15a, the three dimensional crystal
will melt. Doing the integral (4.99) in three dimensions in the Debye approximation,
neglecting the zero-point contribution, yields
kgT

Me?

When the thermal disorder, relevant to the melting process, is primarily due to the
modes, a relationship between the sound velocity (which can be deduced from the
Debye temperature) and the melting temperature Ty, follows,
}i!BTm

Mc?

with \/¥m ~ 0.1 —0.15. It turns out that this relationship is quite well obeyed in
many solids.

v~ 1.6 (4.103)

(4.104)

Y =~ 1.6

Let us now turn to the quantum fluctuations. (4.99) becomes in d = 3 at zero
temperature (©p is the Debye temperature),

k,l",’(_),fj
M c?

12This is not an accident. It turns out that a d-dimensional quantum problem can be reformu-
lated as a statistical mechanics-like problem in one higher dimension, using the functional integral
formalism (Feynman path integrals for many particle problems). The present ‘free’ quantum theory
turns out to correspond precisely with the classical free theory in d + 1 dimension, with an effective
temperature in ‘euclidian space-time’ ~ p.

13More generally, ‘topological defects’ if one is dealing with other types of condensates.

v =~04 (4.105)
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From the comparison of (4.103) and (4.105), it follows directly that the thermal
fluctuations start to dominate over the quantum fluctuations at temperatures larger
than p/4. Since most solids melt at temperatures Th; >> 6p, quantum fluctuations
are in most cases irrelevant for the melting process.

=3 Excercise 4.23

There are some exceptions, however. When the coupling constant p (4.102), mea-
suring the magnitude of the quantum fluctuations in the ultraviolet, becomes large
enough, the three dimensional crystal might even be destroyed at zero temperature.
This coupling constant is in first instance controlled by the atomic mass M and one
would expect that a prime candidate for quantum melting would be the rather poorly
(van der Waals) bonded, light mass Helium crystal. Since the thermal- and the quan-
tum fluctuations act similarly on the harmonic level, one would expect that one can
apply as well the Lindemann criterion to the zero temperature melting process. We
leave it to the reader to show that the quantum-Lindemann criterium indeed predicts
Helium to be a non-crystal at zero temperature.

— Bxcercise 4.24

At ambient pressures, He indeed prefers to be a non-crystal'*. This does not mean
that it does not fit any longer the classical ‘paradigm’ of section (1.2). Instead, it
forms a different type of condensate which incorporates much more zero-point motion:
the superfluids which are explained in chapter VI.

Floating solids.

It was found that the crystalline condensate cannot exist in one dimension even at
zero temperature, and the question immediately arises what happens instead. It turns
out, that the actual ground state no longer fits the definition of classical state as given
in section 1.2. It is something else that one might want to call a ‘quantum fluid’,
in the sense of ‘quantum is everything else than classical’. It is a highly collective
state, however, which has still many features in common with the classical crystal
and for this reason I prefer to call it ‘the floating solid’ (solid in the sense of crystal,
floating in the sense of floating in the swimming pool). Because of its closeness to
the crystalline state, it is actually not hard to understand its nature.

The basic simplification comes from the observation that the crystal is eventually
destroyed by rare, very long wavelength fluctuations. u controls the fluctuation of
every individual atom. When we keep this quantity small, we are assured that the
displacements of individual atoms are quite small, so that there is nothing wrong
with the harmonic approximation: although there is no classical ground state, the
zero-modes are still well defined. In order to see what is going on we have to ask a
question which is more sophisticated than (4.95): knowing the position of an atom
at some particular position Ry, what is the uncertainty in the position of an atom L

147t is actually a border line case: at moderate pressures it crystallizes again.
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lattice sites away? Defining | = La, we have to calculate

(u®) —w(O)) = ((Au(®))?)

w/a
= [, k(1 =~ cos(k) QM=) (4.106)
The expectation value in the second line we have seen before, (4.95),
B gm/a (1 - cos(kl))
2y _ A
(Au®)) = —— [ kPR 1+ 2np(f)) (4.107)

This looks similar to (4.95) except for the factor 1—cos(kl), complicating the integral.
What this does is to limit the allowed k values to those which are smaller than 7/l -
modes with a wavelength larger than [ cannot contribute to the uncertainty (4.107).
Hence, the cosine can be dropped, if one starts integrating at k., = 7/I,

/o Jk

w/l k

- a2,uln(é) (4.108)

(Au))’) = a’p

This gives away the story: everytime the length scale is increased by an order of
magnitude, the relative position uncertainty increases by a factor of two, as indicated
in figure 4.5.

R, Ry + 10a R, + 100a

S

Y =>

R

Figure 4.5: in the floating solid, the uncertainty in the spatial position of atoms
relative to some reference position doubles, everytime that the length scale is increased
by an order of magnitude.

In the higher dimensional worlds, we are used to the idea that quantum-fluctuations
(think Heisenberg uncertainty relations) grow in magnitude if the spatial size of the
system is decreased. In the one dimensional world it is opposite: starting with a fairly
classical behavior on small length scales, the quantum fluctuations become more and
more important if the size of the system increases! Hence, the quantum fluctuations
dominate in the macroscopic realms. This is actually nothing else than the familiar
phenomenon that rare fluctuations eventually dominate in one dimensional systems.
Even cars on motorways are subject to this phenomenon. Imagine dense traffic on a
one lane road. Clearly, the speed of all cars will be set by the speed of the slowest
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driver. By theorem, if the road is infinitely long, there will be always at least one car
moving at a speed of 0 mph (the rare fluctuation), and therefore the whole system
of cars comes to a standstill. Clearly, this will not happen on a motorway with an
infinity of parallel lanes (d = 2), let alone it will happen with airplanes (d = 3).

It is not straightforward to observe these one dimensional crystalline floating solids.
It is not an easy task to fabricate a line of atoms, which does not know about the
rest of the world!®. In addition, the (stronger divergent) thermal fluctuations tend
to take over already at very low temperatures because of the largeness of the atomic
mass. In fact, for these reasons the quantum mechanical floating crystal has never
been observed experimentally. However, although the phenomenon is tied to classical
condensation, it is not at all special to the crystalline state. As is everything in this
chapter, this phenomenon is of a far greater generality. Floating quantum solids
are formed (and observed) in one dimensional spin systems. They are especially
important in one dimensional metals. The so-called Luttinger liquids, realized in the
| = 1 electron systems, are best understood to correspond with quantum floating
solids, build from the Fermi-liquid condensate - see chapter VII.

4.7 Excercises

4.1 Tt will be shown in chapter VI that the superfluid state of *He is characterized
by a finite overlap with the free boson ground state |0) 5 = H£1b£zo|va0), where

b} creates bosons in plane wave states. Expand the position states (4.3) in plane
waves and derive the N (number of particles) dependence of the overlap of the
free boson state with the classical part of the wavefunction of a *He crystal.

4.2 Show that the matrix of force constants has the following general properties:

(a) The matrix elements only dependent on the interatomic separations (trans-
lational symmetry):

Vg = Vap(B2 — B2 . (4.109)
(b) The matrix is real and symmetric (order of taking derivatives !).
(c) The matrix V is non-negative.

(d) Given that the Bravais lattice is symmetric under inversion, Vg(R° —

4.3 Proof (4.32a,4.32b,4.32¢).
4.4 Proof (4.37).
4.5 Derive (4.38).

4.6 Derive (4.39).

!5For an ingenious example, and further theoretical analysis, see V. J. Emery and J. D. Axe,
Phys. Rev. Lett. 40, 1507 (1978).
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4.7 Consider a linear chain of ions with alternating masses (M; and M,) and
alternating force constants K and G living on the bonds between the ions:
My —(K)— My —(G)— My —(K)— M, —(G)—---. Apply periodic
boundary conditions and calculate the normal modes and their spectrum. Dis-
cuss the following issues for the following cases: (i) My = My and K = G. (ii)
M, # My and K =G. (iii) M; = My and K # G. (iv) My # M, and K # G.

a The form of the dispersion relations.
b The nature of the modes at &k — 0.

¢ The nature of the modes at the zone boundary, & — 7/a ( o lattice
constant).

4.8 Check the commutation relations (4.52), starting from (4.48).

4.9  a Sketch the phonon density of states (DOS) of the chain model of excercise
4.7 for M1 # Mg or K 7é G.

b The ‘van Hove’ singularities in the d = 1 densities of states are due the
disappearance of the derivative of w(k) at high symmetry points. Are these
singularities also found in d = 37

4.10 Calculate the specific heat of the lattice in the Debye model for d = 1,2, 3.
How does the dimensionality influence the temperature dependence in arbitrairy
dimensions?

4.11 Show that the 7% law for the specific heat, as found from the Debye model,
holds as well for the general case (4.47) in the low temperature limit. Express
the specific heat in the angle-average of the sound velocity.

4.12 It is instructive to consider the perturbative corrections coming from anhar-
monicity on the single oscillator level. The relevant perturbation theory can be
found in ”Inleiding in de Quantummechanica II” by R.H. Terwiel.

a Consider the perturbation A\H; = Ag* on a single oscillator Hy = 5’% +

%mw2q2. Calculate the energy levels up to first order. Are they still

equidistant?
b Why does a cubic term ¢* not alter the level splittings?

¢ Calculate the second order corrections to the energies both for a ¢* and ¢*
potential.

d Calculate the states themselves up to first order in a ag®. Determine the
expectation value of the observable g in the n-th level. Hint: take only the
terms which are linear in «. Use these findings to argue that the crystal
will tend to expand if temperature increases.

4.13 Derive (4.67-4.68). Point out why &, k', k" — k,q, K. What is the reason
that the terms containing only a single boson operator can be neglected?
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4.14

4.15
4.16

4.17

4.18

4.19
4.20

4.21

4.22

4.23

4.24

Consider H4 and derive the dependence of the decay rate on momentum
in the long wavelength limit due to this term. Consider only the processes
where the phonon decays in three other phonons.

Derive an expression for M in (4.76).

By definition, the electron-density operator in real space is given by p(7) =
>, 6(7—73) (7} is the position of electron 7). Show that p(7) = % 7 pgexp(iq-
) with pz; given by (4.78), with the fermion operators creating fermions
in plane wave states.

Consider a chain of atoms with one electron orbital per site and nearest-
neighbour hoppings. The system of atoms is described by the balls and
springs of (4.21-4.25). The atoms and electrons are coupled by the Peierls
coupling (refph85). Derive the Hamiltonian in terms of electronic Bloch
states and phonons, including an explicit expression for the momentum and
phonon-frequency dependent electron-phonon interaction ‘vertex’. This is
the so-called Su-Schrieffer-Heeger (or SSH) model, which plays a central
role in polymer physics.
Consider the following ‘displaced oscillator’ problem (¢ and p are position
and momentum, respectively): H = 5’% + smw’q® + og.
a. Derive and solve the classical equation of motions. Explain the solu-
tion.
b. Solve the quantum-problem. Hint: rewrite the Hamiltonian in terms
of boson operators and try the ’shifted boson’ transformation a' =
at + constant.

Proof (4.85-4.87).

Derive (4.91) and (4.92): use (4.87) to derive the new fermions and bosons
(4.89) and use subsequently (4.86) to find the Hamiltonian in the new
operators. Discuss the nature of the new boson/fermion Fock space.

Derive (4.94). Hint: use the relation e4e? = eA+B+314.B] and realize that
|0) contains a fixed occupancy of phonons which does not change during
the hop.

Check that (4.97) follows from (4.96): check the action of the different
operators appearing on the left hand side of (4.97) on the states (4.96).

Derive (4.103) and (4.105) from (4.99,4.101). Hint: in the Debye model
N = k3 /(67%) = 3/(47a®) (a = roosterconstante).

In this excercise the quantum-fluctuation (4.105) is estimated for noble
gas crystals. The interaction between noble gas atoms is well described
by the Lennard-Jones potential (van der Waals + hard core): V(r) =
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4e [(%)12 - (%)6] For He this potential is:
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a. The crystal potential is well approximated by a sum of pair potentials.

Show that the sound velocity can be estimated by ¢ ~ /2U/M, where
U is the minimum of the Lennard-Jones potential.

b. Show that v ~ 1.1n/(av' MU). How large is /7 for *He ?

c¢. Assume that the lattice constant does not change. Calculate the ’s
for the other noble gasses using the Lennard-Jones parameters:

Ne Ar Kr Xe

e (eV) | 0.0031 | 0.0104 | 0.0140 | 0.0200

o(A) 2.74 3.40 3.65 3.98
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5 Strongly correlated electrons: Magnetism.

Electron systems, as they occur in crystals, form a more interesting environment to
study quantum many body theory than the atomic systems of the previous chapter.
The difference between atoms and electrons is in first instance quantitative. The
mass of an electron is a factor 100000 or so smaller than the mass of a typical atom -
as a consequence, the electrons are subject to severe quantum fluctuations on length
scales of Angstroms. This prohibits the formation of electron crystals - there are
examples of real space orderings of electrons but these are always accompanied by
lattice deformations'. Instead, other condensates are found in electron systems. In
this chapter we will focus on the spin systems. The reasons to start here are twofold:
spin systems occur in nature in both the real space condensation and momentum
space condensation varieties. The first one is conceptually close to the crystalline
condensation of the previous chapter, while momentum space condensation (under-
lying superconductivity/superfluidity and the Fermi-liquids) is harder to grasp. A
main purpose of this chapter will be to clarify how the first can be continued in the
second (sections 2.5 and 2.6). A second reason to study spin systems first is that they
form a relatively benign mathematical environment to study matters of principle. In
the sections 2.3 and 2.4, dealing with the Néel (antiferromagnetic) state, we will do
some deep probing into the dark corners of the classical state. Before we turn to the
spin systems, we first have to learn how electrons can be forced to behave as spins.
What is needed is strong repulsive interactions, high density and a crystal potential,
as will be explained in the first two sections.

5.1 Electron correlations.

In the previous two chapters we have been confronted with two viewpoints which
seem mutually exclusive. In the chapter on band structure, we boldly neglected the
electron-electron interactions and let the static lattice potentials and the electron
kinetic energy do their work. The outcome was the band picture, completely domi-
nated by the effects of kinetic energy. In the study of the crystalline state, we found
a complete domination of the interactions, while the quantum kinetic energy played
a minor role. A focus point of modern condensed matter physics is the study of
systems where neither of these two pictures apply. This discipline is called ‘electron
correlations’ or ‘correlated fermions’.

Correlation means in this context that a particle can only move if its motion is
synchronized with the motions of other particles. This is naturally found in situations
where the interactions dominate. The crystalline condensate is an extreme example:
a single atom in the crystal can only freely move if all 102® particles move with it
in the same direction - the property of rigidity. These correlated motions are also
common in classical fluids. Consider for instance liquid *He at a temperature of
a view Kelvins. Quantum effects can be neglected and it can be looked at as a

LA candidate for a proper electron crystal could be the Wigner crystal, conjectured to exist in
two dimensional electron gasses. Research is still in progress.
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simple, classical hard sphere fluid. Although the rigidity property got lost in the
fluid, locally the fluid looks still quite similar to a close packed arrangement of hard
spheres. Clearly, in order for a He-atom to move, a neighbour has to get out of its
way which is only possible if this neighbour has found a place to go, etcetera. This
represents a very complicated problem and even this simplests of classical fluids has
escaped a rigorous treatment up to now: the understanding of the hard sphere fluid
relies heavily on results of numerical simulations.

Quantum-mechanics should complicate matters further. What happens if SHe is
cooled down? Miraculously, a state is realized which is quite similar to that of
electrons in a free electron metal: it seems as if the He atoms forgot about their hard
cores and instead they only know from each other existence via the Pauli-principle.
This low temperature Fermi-liquid state is in fact better understood than the classical
liquid (chapter VII). The problem is, however, to understand what is happening in
the regime in between the Fermi-liquid and the high temperature classical liquid at
intermediate temperatures. Such a situation is quite commonly found also in other
(mostly electron?) systems and the truth of the matter is that very little is understood
- this is the problem of correlated fermions.

Turning to electron systems in crystals, the problem is further complicated by the
loss of full translational invariance: the electrons also feel the periodic potential of
the ions. In most cases this is a curse, but sometimes it is a blessing: under the
special condition of charge commensuration one finds that at low energies only the
spins of the electrons matter. Charge commensuration means that there is an integer
number of valence electrons per unit cell of the lattice.

The interactions between electrons in the vacuum or in a weak potential are of the
Coulomb type and, as will be explained in chapter VII, these favour the Fermi-liquid
state at the electron densities found in most solids®. However, this changes drastically
if the lattice potential becomes strong. One has now to calculate the matrix elements
of the Coulomb interactions between electrons in atomic-like wave functions. Because
the charge distributions of the valence electrons are rather localized in the vicinity
of the atomic cores, the short range part of the effective interactions is strongly
amplified, compared to the bare Coulomb potential. This can be easily seen by
approaching the problem from the atomic side. We consider well-localized tight
binding electrons, with a bandwidth W = 2zt (section 3.3). Assume one orbital per
atom and consider the charge commensurate case: the number of electrons per atom
n, = N,/N is an integer. As a reference, we take ¢t = 0 (classical limit) and put n
electrons on every atom. For finite ¢, the electrons want to delocalize. In the figure
is indicated what happens if one electron hops to another atom,

After the hop (Fig. 5.1 b) a state is reached, where one atom has one electron more
(ne+1) and one atom has one electron less (n, —1). Because of the atomic character

2For instance, the heavy fermion- and mixed valence systems, high T superconductors and other
doped Mott-Hubbard insulators, organic metals.

3The only well established exception is the fractional quantum Hall state found in the low density
two dimensional electron gas in a magnetic field.
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Figure 5.1: (a) The classical state fort = 0 for a single band problem with one electron
per site. (b) The hopping of an electron produces an unoccupied- and a doubly occupied
site. This costs a large electrostatic energy (U) because the electrons on the doubly
occupied site are close together. When U > W this prohibits the delocalization of
electrons. (c) Away from charge commensuration, hops occur which do not cause
double occupancy. Indicated is a single hole which can move relatively freely.

of the wave functions, the hopping process has caused a piling up of charge and this
costs an electrostatic energy,

U= Elet! + Ele~t _ 2FT (5.1)

This quantity can be estimated from ionization- and electron affinity energies of iso-
lated atoms. Especially for d— and f— electrons the atomic U’s are quite large (15-30
eV). As long as U >> W (bandwidth), the kinetic energy cannot overcome the in-
teraction energy, and the electrons are localized on the atoms. Because the electrons
cannot move, the whole system is an electronic insulator: the ‘Mott-Hubbard’ insu-
lator. What is the difference with the band insulators of chapter III? A necessary
condition to find an insulating state in a non-interacting system is the presence of an
even number of electrons per unit cell. The Mott-Hubbard insulators occur for an
integer number of electrons, also in the case that the number of electrons is uneven.
When independent electron theory would indicate a band insulator, the effects of the
interactions are in first instance quantitative: the neglect of the U’s will lead to an
underestimation of the gap?. However, if independent electron theory would indicate
a metal because the number of electrons per unit cell is uneven, the interactions would
cause an insulating state which is qualitatively different from the band insulator. In
this case, one ends up with a spin system at low energies. For instance, in figure
(5.1) we consider a single band system with n, = 1. Every electron has to stay ‘at
home’ on its particular site and therefore it cannot pair up its spin with the spins
of the other electrons, as would happen in the metal. In the classical limit (¢ = 0),
we would deal with a system of non-interacting spins - although the charge of the

4This is a well known flaw of LDA-band structure theory. Even in weakly correlated systems
like silicon, the band gap is underestimated by a factor of two. Although the qualitative origin
of this effect can be understood from the simple Mott-Hubbard perspective, one needs at least
the GW method as explained in chapter VII to arrive at reliable quantitatie estimates for the gap
magnitudes.
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electron is localized, its spin is still free to point in all possible directions. It will be
shown in the next section that for finite ¢ the spins start to interact because of virtual
fluctuations, involving states like the one in Fig. 5.1b. This is the simplest way to
undress the electron from its charge such that only its spin remains.

In the above we have considered a limiting case, which is realistic only if the atoms are
very far apart. How does this work in real solids? When the atoms are brought closer
together, we learned that the t’s and thereby the bandwidth increases. At the same
time, the system becomes a better dielectric and this leads to a reduction (screening)
of the bare atomic Coulomb interactions. Hence, W is increasing and U is decreasing.
To give some feeling, in real magnetic insulators the screened U’s are typically of order
5-10 eV, while the bandwidths are in the range 1 — 5 eV. Typical examples are the
3d and 4f salts like N2O and CesO3. When W ~ U, the above arguments no longer
apply and a transition occurs to a metallic state. A typical example is V03 which is a
Mott-Hubbard insulator at ambient pressure, undergoing a transition into a metallic
state under pressure: pressure decreases the lattice constant.

Next to the U/W ratio, one can also try to control the electron density. For instance,
the Mott-Hubbard insulator can be doped in the same way as normal semiconductors
are doped. Extra holes or electrons are introduced and these can hop around without
causing double occupancy: these holes/electrons can delocalize (figure 5.1c). This is
actually a basic aspect of the physics of the high T, superconductors. It was already
announced in chapter III that band structure theory fails in describing a ‘parent’
material like La,CuQy4. The reason is that the electrons in the CuQ, layers are in
a Mott-Hubbard insulating state. These parent insulators are doped (for instance,
by substituting Sr?* for La*' in the inert layers), introducing holes in the CuO,
planes. These holes can now hop around without causing double occupancy. This
turns these insulators in metals which superconduct at ‘high’ (~ 100K) temperatures.
It is widely believed that the physics of the metallic and superconducting state lies
outside the scope of the conventional paradigm which is the subject of these lectures
- it represents the most urgent problem in contemporary quantum condensed matter
physics.

Anoher way to fight the charge commensuration is by involving more bands. The
tightly-bound d and f electrons typically satisfy the Mott-Hubbard criterium of large
U’s and small bandwidths, while the more extended s/p (nearly free) electrons are in
the small U/W limit. Because the latter electrons have large bandwidths, it happens
quite often that both the f/d and the s/p bands are partly filled,

This causes a non-integer occupancy of the d or f states. For instance, in figure 5.2
the density of states of a metal like Ni is indicated. The electronic configuration
of a Ni atom is 3d)%4s)!. Because the s band crosses Er in Ni metal, the local
electron distribution becomes more like 3d)*445)%%. Accordingly, there are many free
holes (fig. 5.1c). The d-electrons can therefore easily delocalize and one finds an
itinerant ferromagnet instead of a Mott-Hubbard insulator. One can push this to
extremes. In many rare-earth and actinide materials it appears possible to tune the
f-occupancy very close to a charge commensuration point while there are still other
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Figure 5.2: Schematized band structure density of states of (a) an isolated Ni atom,
(b) metallic Ni: both the 3d bands and the s/p nearly free electron band are partly
filled, (c) the Mott-Hubbard insulator NiQ; the 4s electrons are pushed away from
the Fermi-energy by the presence of the electronegative counter-ion.

bands at Er. Under these conditions one finds the phenomenon of heavy fermions.
At low temperatures, a Fermi-liquid state (chapter VII) is realized, characterized by
quasiparticles with a mass exceeding 1000 electron masses!

The phenomena occurring in the ‘strongly correlated metallic state’, as I just sum-
marized, are poorly understood and are still subject to a large scale research effort.
There is only one subject which is very well understood: the Mott-Hubbard insulat-
ing state itself. Where are these insulators found in nature? One has to avoid the
uncorrelated electrons of figure 5.2, so that only the correlated electrons are found
near Er. To get rid of these uncorrelated electrons one needs electronegative counter
ions like O, F, Cl: Mott-Hubbard insulators are typically found in ionic substances
like oxides, fluorides etcetera. For instance, consider the 3d oxides (CuO, NiQO, Fe;04
(rust), etcetera). Take ZnO as a reference : in this material the 3d-band is just filled
and this is a band insulator with a filled O 2p valence band (O?7) and an empty
Zn 4s conduction band, separated by a large band gap ~ 10 eV. In C'u there is one
more hole on the metal ion and this is accomodated in the 3d band, which becomes
partly filled (3d)° (Figure 5.2¢). There is precisely one 3d hole per Cu atom (charge
commensuration) and because of the large effective interactions, these holes become
localized®. Going further to the left in the 3d series, the d-band is gradually emptied

5In LayCuQy, the orbital character of these localized holes is 2 — y? - band structure theory
predicted this aspect correctly (chapter IIT). It turns out that in cuprates the occupied O2p states
lie closer to Er than the doubly occupied 3d states. Accordingly, the low lying valence band states
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untill one arrives at CaO which is again a band insulator. All monoxides involving
transition metal ions are Mott-Hubbard insulators.

5.2 Strong coupling: Mott-Hubbard insulators.

In the previous section I already hinted at a remarkable phenomenon occurring in
the Mott-Hubbard insulators: starting out with strongly interacting electrons at high
energies one ends up in a low energy universe where only the spin degrees of freedom
of the electrons have survived. In this section I will present the rigorous way to
transform electrons into spins by a ‘projective renormalization’. The basic idea is,
that we can use the presence of an energy scale (U) to renormalize away (or ‘integrate
out’) the electrons in a controlled manner by perturbation theory. This ‘canonical
perturbation theory’ is similar to the canonical transformation, introduced in the
context of polaron physics (section 4.5).

With the principle of adiabatic continuity in mind, we should invent the simplest
possible high energy model, fulfilling the basic requirements of symmetry and dimen-
sionality of Hilbert space. For the Mott-Hubbard insulator these are: (i) fermions
carrying spins, (ii) charge commensuration, (iii) strong local interactions. These re-
quirements can be fulfilled by the so-called (single band) Hubbard model,

H=-t) czigc;+5a +U Y ngng, (5.2)

e
,0,0

c}g(c;a) creates (annihilates) an electron with spin (= {1, }) on a lattice site 7, and
Niy = ¢\ ¢iy. This is nothing else than the single band tight-binding model (3.39),
augmented with an interaction term of the form discussed in the previous section: it
costs an energy U to put two electrons on the same site. When U = 0 it is trivial
to solve (5.2): according to the discussion in section 3.3, we solve the problem for

one particle: c%a = \/LN D ei’z'fc}a and the many electron states are of the form
7

|0) = Hgg c£0|vac.) . These are, however, not eigenstates of the interaction term and

if U & W, while the electron density is high, it is even not a good idea to use |0)
as a zero-th order in a perturbation theory. Here we will consider the opposite limit:
the interaction U is very large compared to the bandwidth W: ‘strong coupling’.
We do so because the problem is easier to understand in this limit. In section 5.4 it
will be explained how the results derived here are continued into the more complex
intermediate and weak coupling regimes. When the interactions dominate, the Hilbert
space is organized in a different way than is the case in the non-interacting problem.
U acts in real space, and it is instructive to choose a basis in terms of real space
electron configurations (‘configuration space’): all possible ways to distribute N,
electrons over N sites with the constraint that a single site is at most occupied by
a pair of electrons with opposite spins. A basis is choosen such that every state

have a predominant O 2p character while the conduction band is 3d like. These insulators are called
‘charge transfer insulators’.
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in Hilbert space corresponds with one particular state in configuration space. For
example, (T~ spin up, |~ spin down, 0 ~ empty site, 7|~ doubly occupied site),

1 = | Ticali Qo)

= . .c;-r_ch;rl . |vac.) (5.3)
|l,> = ' Ak = Tli—l 0i0i+1 . )

= c;-[_chz_ll ... Jvac.) (5.4)

= Bxcercise 5.1

To get some feeling, let us consider the interacting version of the two level model for
the hydrogen molecule of section 2.3. The two site version of the Hubbard model is
actually quite a good model for real Hs,

H=—t E(CJ{O.C20- + CEJCM) + U(annu + nnggl) (5.5)

Let us first attempt to solve this in terms of the wavefunctions of the non interacting
problem. The hopping term is diagonalized and bonding- (b, at -t) and antibonding
states ( al, at +t) are found,

1
b = —=(cl, +cl) (5.6)

V2

1
a’:rr = E(CIJ_Cga) (57)

In the presence of one electron, the ground state is [0; N = 1) = b}|vac) . Consider
now two electrons. We studied this already for U = 0 (section 2.3),

0;N =2) = b]%b“vac) (5.8)
1
= E(CiTCL + clypely + eyl + el vac) (5.9)

In the second line, the wave function is written explicitely in real space configurations.
We find that the choice of single particle ‘momentum’ eigenstates (5.8) implies that
the ‘singly occupied’ configurations ~ c{c“vac} carry exactly the same weight in the
wave function as the ‘doubly occupied’ configurations cITc:-' |Jvac) (i = 1,2). Obviously,
if U # 0 the latter are energetically unfavourable and their relative weight in the

ground state wave function has to decrease.
It is simple to solve the ‘Hubbard hydrogen molecule’ exactly.
= Excercise 5.2

For large U/t the ground state is found to be,
1 2t
\/2(1 120 [(elyehy — el edy) + =(clyel, + chcgl)]Ivac) (5.10)

U
In this limit, the singly occupied configurations are dominating in the ground state.
The admixture of doubly occupied states becomes very small if U >> ¢. This means

0; N =2) =
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that electron 1 is always at site 1 while electron 2 is at site 2, while the remaining
fluctuations are of the virtual kind: one of the electrons can make a detour to the
other atom as long as it does not leave its ‘home’ atom for a time longer than ~ 1/U.

In the excercise (5.2) another low lying eigenstate is found

1
[T, N =2) = ﬁ(ciTcgl + chch)|’uac) (5.11)
which costs only an excitation energy ~ 2t%/U, while all other excitations cost an
energy ~ U. (5.10) is clearly a spin-singlet state, while (5.11) is a triplet: the low
energy solutions of the electronic problem (5.5) look like spin wavefunctions. This is
no accident, as will soon be demonstrated.

= Excercise 5.3

The size of the Hilbert space increases very rapidly if the number of sites increases.
For instance, the largest Hubbard systems which can be exactly diagonalized with
state of the art supercomputers have 20 sites and 20 electrons. It is nevertheless
possible to use the largeness of U to simplify the problem considerably by integrating
out doubly occupied configurations perturbatively. This results in the so-called t — J
model which is still unsolvable, except at the charge commensuration point N, = N
where it reduces to a spin-only Heisenberg model.

(t/U) is the small parameter, and in the same spirit as in chapter 4 we first consider
the (classical) limit where the interactions dominate: U/t — oo. In this limit, the
total Hilbert space is split up in sectors characterized by the total number of doubly
occupied sites. These ‘Hubbard’ sectors are separated from each other by large gaps
~ U (figure 5.3).

Let us specialize on the case that N, < N. The sector with the lowest energy is the
one containing configurations of only empty and singly occupied sites, and doubly
occupied sites are ezcluded. The next sector (at energy U) contains all configurations
with a single doubly occupied site somewhere in space. N, is kept fixed and therefore
an extra empty site is found somewhere else. In this way we continue, building up
Hilbert space: at 2U there is a sector with two doubly occupied sites, at 3U a sector
with three doubly occupied sites, and so on. The key observation is that the low lying
sectors remain well separated from each other for finite ¢, as long as t/U is a small
number. Quantum-mechanics does make a difference: for ¢t = 0, the states within
a Hubbard sector are degenerate. This classical degeneracy is lifted by quantum
mechanics (¢ # 0). As long as the sectors do not overlap, this problem can be treated
perturbatively (perturbation theory cannot change the dimension of Hilbert space !).
Although the ‘intra-Hubbard sector’ problem found in this way is still quite untrivial,
its Hilbert space is dramatically smaller than the Hilbert space of the full electronic
problem. At least at half-filling, the problem will be simplified to such an extent that
it becomes tractable again.

Let us now formulate the perturbation theory. The Hamiltonian is divided in a zero-
th order part describing the physics within a Hubbard sector (Hg), and a perturbation
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= Excercise 5.4

+ng cTc

1+60’ 1+6(I}

(5.12)

(5.13)

What do these expressions mean? The hopping term Tp, included in Hy, describes

hopping processes within a Hubbard sector. For instance, ¢; d—-n

125

{+[5‘,¢7)

means:




an electron with spin ¢ can only be annihilated at site i + 6 if there is no electron
with spin & present on the same site. Otherwise, a doubly occupied state would be
annihilated. In the same way, (1 — ng) C%a takes care that no doubly occupied state
appears if the electron is created. The first term in Tj describes therefore the exchange
of an empty- and singly occupied site (figure 5.1c). The second term in Tj describes
the exchange of doubly- and singly occupied sites. All other hoppings change the
number of doubly occupied sites, and these are collected in the perturbation Hy: T}
adds a doubly occupied site and T_ removes a doubly occupied site.

= KExcercise 5.5

As in the case of the polaron (section 4.5), we again introduce a canonical transfor-
mation,

Heyy = e¢SHe ™ (5.17)

but now to construct a perturbation theory taking into account the effects of H;. We
assume that t/U is small, such that the corrections to Hy are small. S has to be of

order 0 (%) . and

eS:1+S+%SRw“ (5.18)
has to converge rapidly. Recall (4.89),

Har = H+ 15, H] + 5 [S,[5, H]] + 0(5°) (5.19)
As in (4.91), the fermions transform ‘with’ the Hamiltonian

d, =e’d,e® (5.20)

acting on a transformed Fock space. For the case (5.12) - (5.16), Heg is explicitely
up to first order in t/U,

HY = Hy+ T, + T+ [SD, H] + 0(5?) (5.21)

€

We demand that up to this order Héflf) = Hy : with one hop (first order) we would
leave the Hubbard sector under consideration. From this requirement the explicit
form of S follows, up to first order,

T, +T- = —[SW, H] (5.22)

We assumed that S carries a small prefactor (S ~ t/U). Because T, + T_ has a
prefactor ¢, (5.22) has to be equal to

T, +T. =[SV V] (5.23)

This equation determines S™), and all what remains is to ‘pull’ SM ‘out of the
commutator ’. It follows,

SW — %(T+ _7) (5.24)
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= FExcercise 5.6

S is now determined up to first order in (¢/U), but we still have to derive the trans-
formed Hamiltonian. Because of (5.22) it is excluded that Hes describes fluctuations
between Hubbard sectors. Hence, the Hamiltonian has to be evaluated up to second

order because one needs at least two hops, one to leave the Hubbard sector under con-
sideration, and the other to return. For instance: T; ;1 = 0; Tlivs 4 T Lits -

In analogy with Rayleigh-Schrédinger perturbation theory, one only needs S up to
first order to obtain the Hamiltonian up to second order. Define

S@ =5 1 g (5.25)

with S ~ 0 (%) (5.19) is expanded up to second order, using (5.25)

t3
HY = Hy+ Hlg +0 <W) (5.26)

with the contributions ~ t?/U collected in,
: 1
Hyg = [SW, T +T7] + [SW, T + 5[5(1), (SO, VI + 1[5, V] (5.27)

using [S', H] — [S', V] such that S’ ~ (t/U)? (compare (5.23))

This simplifies to

Lo = T, 77 + 50,7 + [, V) (5.29

= BExcercise 5.7

Hgf) should not contain terms describing fluctuations between Hubbard sector. The
term [T+, T~ = T"T~ — T~ T is therefore allowed because these describe processes
where the system always ends up in the same Hubbard sector where the fluctuation
departed. On the other hand, [S™), T causes transitions to the nearest-neighbour
sectors which are not allowed in Héé) and S’ has to take care of this term. This
implies that

[SW 10 = —[S", V] (5.29)

defining S’ (compare (5.23)). We do not need S’ explicitely to determine the Hamil-
tonian up to second order. Combining (5.26), (5.28) and (5.29) yields the result,

3
HD =1 4+ v+ Lt r v o)

U U?
This expression describes the intra-Hubbard sector physics of all sectors. In first
instance, we are interested in the lowest lying sector, containing the macroscopic, low
energy properties of the system. T+T~ drops out: T~ removes a doubly occupied
state and in the ‘0’ sector the number of doubly occupied sites is already as small as

(5.30)
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possible. Take N, < N (N, > N follows immediately from particle-hole conjugation),
such that there are no doubly occupied sites present in ‘0’. (5.30) becomes for the
lowest Hubbard sector in terms of the fermion operators,

2
Héff) = —t Z(l - n?&)cli,,chﬁa(l - ni’+5&)
050
L ) : 1 1
D) . AZ (1 - nf+5’5’)cf+5r,,: Cfa’nfﬁ'nfacfgcﬂﬁa( - n?+5rr) (5-3 )
1,0,8' ,0,0!

J = 2t%/U is the energy scale associated with the virtual hopping fluctuations between
Hubbard sectors and this quantity is called the ‘superexchange interaction’. The
problem (5.31) is known as the ‘(extended) ¢ — J model’.

= KExcercise 5.8

How to interpret (5.31)? Let us first consider the half-filled/charge commensurate
point N, = N: the lowest Hubbard sector corresponds with the configurations where
every site is occupied by precisely one electron. The hopping term ~ ¢ in (5.31)
vanishes: every single hop would cause a doubly occupied site (figure 5.1 b). For the
same reason, one has to take § = &' in the second term (~ J), because the electron
has to return on the site where it started to hop to avoid double occupancy. In the ‘0’
sector the projections ~ (1 — n,45,) are automatically satisfied and (5.1) simplifies
at half-filling to,

)

g _ _
eff 2

1 ) Ea el o2
Z Gy 51 Ciot i Y35 G Cit b0 (5.32)

-
1,6,0,0'

The creation and annihilation operators acting on the same site occur in this expres-
sion in pairs: the electrons are localized and charge transport is not possible. This
is not surprising because we already observed that the electron had to return to
the site where it started its hopping excursion, as a ramification of the Hilbert space
projection. This is the mathematical version of the intuitive explanation of the Mott-
Hubbard insulating state, as presented in the previous section. In addition, (5.32)
describes a spin-only problem. Recall the definition of the su(2) algebra for S =1/2
in terms of fermion operators,

1
Sl = : (c;-rT cit — CL cil) (5.33)
St o= ey (5.34)

We leave to the reader to show that (5.32) can be written as

a 2a
HR =JY (SZ‘ Si15 -> (5.36)
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= KExcercise 5.9

The above is a mathematically rigorous proof of the fact that at half-filling electrons
(as objects carrying free spin and charge) no longer exist at energies < U. Instead,
the system is described entirely in terms of the spins of the electrons. One should
appreciate the radical changes which have occurred. For instance, the electrons at
high energy are fermions while the low energy spins obey the su(2) algebra, which
describes neither fermions nor bosons. The statistics has changed! This finds its
origin in the Hubbard projections which change completely the dimensionality of the
Hilbert space associated with the low energy physics. At half-filling the Hilbert space
of the non-interacting problem has a dimensionality ~ (2N)!/(N!)* (the number of
ways to distribute N objects over 2N possibilities). After the Hubbard projection,
the spin-degrees of freedom of the electrons are left and there are ‘only’ 2V ways to
distribute up- and down spins over NV lattice sites.

According to (5.36), the virtual hopping fluctuations (the remainders of the kinetic
energy) causes the spins to interact. These ‘kinetic’ spin-spin interactions are in fact
easy to understand. Because we assumed U to be large, the hopping excursions have
to be short ranged and we only have to consider nearest-neighbor sites. Let us consider
two neighbouring sites occupied by electrons with anti-parallel spins. The hopping
‘histories’, bringing the system back to the ‘0’ sector after two hops, are of the kind:
| Tilivs) L0 Tlivs) 5 | lilizs). This yields a contribution ~ (¢2/U) S Sks
(compare with (5.34,5.35)). The sign of the spin-spin interaction can also be directly
established. Because of the Pauli-principle, this second order fluctuation is forbid-
den if both spins are parallel (| 1;1:1s)) and the fluctuation leads of course to an
energy gain. Therefore, the spin-spin interaction favours anti-parallel arrangements:
an anti-ferromagnetic (J > 0) spin system is found. Notice that this kinetic exchange
mechanism is quite different from the familiar Hund’s rule exchange mechanism of
atomic physics. The latter applies to strongly overlapping electrons: if the spins of
the electrons are parallel, the Pauli principle causes them to stay further apart at
average than would be the case for antiparallel spins (the exchange hole) which re-
duces the effective (repulsive) Coulomb interaction. This exchange mechanism tends
to favour ferromagnetism. This is also relevant in condensed matter physics: in itin-
erant magnets the electrons are in extended, strongly overlapping states and nearly
all metallic magnets are ferromagnets. In the magnetic insulators the electrons barely
overlap and, with equally few exceptions, these are all antiferromagnets.

One reason to feel more comfortable with spin systems than with correlated electrons
comes from the habit of spins to conform to the classical paradigm of section 1.2: spins
freeze out in classical condensates with nearly the same ease as atoms. This tendency
to form classical states should be understood to be a consequence of their relatively
‘small” Hilbert space, which is rather sparsely connected: compared to a full electron
problem there are far fewer states to go to, starting out with the wave function of the
classical state. What happens if one dopes the Mott-Hubbard insulating state? This
is described as well by the ¢ — J Hamiltonian (5.31) and we leave it to the reader to
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show that one finds hopping holes like the one in figure 5.1c¢, next to the interacting
spins.

= Excercise 5.10

When the density of free carriers increases, a dramatic increase of the quantum-
fluctuations is found®. It is believed that any finite density of free carriers causes a
melting of the classical spin state and what comes in its place is still a mystery’.

= Excercise 5.11

5.3 Classical spin condensation.

Compared to electrons, spins are relatively weakly fluctuating objects and they tend
to form classical states: the ordered magnets. Despite their complicated algebra
(su(2)), spin systems are much easier to understand theoretically than full electrons or
full atoms. A first reason is that the simple Heisenberg Hamiltonian (5.36) is already
quite realistic. Although it might be hard to calculate J numerically, symmetry
demands that the operators are spin operators, while the largeness of the gap will
take care of the local (nearest-neighbor) nature of the interaction. More importantly,
spins are more easy to handle mathematically than fermions or bosons, because of
the smallness of their Hilbert space. In this section we will force the spins in the
paradigm of the classical state of section 1.2 and this will be a repetition of the first
three sections of the previous chapter. Only at two instances magnets look different
from crystals: (i) What to use for the Y’s? (ii) How to discover harmonic oscillator
bosons in a su(2) algebra? These aspects will be heavily emphasized: everything else
is just the same as in crystals, at least in antiferromagnets. Ferromagnets are special,
as will be explained.

Generalized spin coherent states

In this section we will follow the pragmatic strategy which we learned to appreciate
in the previous section: let us ask advice from mother nature regarding the answer,
to work our way backwards by constructing the wave-function of the semi-classical
state, subsequently studying the internal consistency of this state. The answer is
well known from neutron scattering or magnetic force microscopy: condensates exists
in spin systems, where every spin has turned into a magnetic dipole, indicated by
an arrow pointing towards a particular direction in space, and these dipole moments

6The case of a single free hole is quite well understood. Qualitatively, an analogue of the polaron
of section 4.5 is formed, with the difference that the polarization cloud now corresponds with a
droplet of quantum spin liquid, surrounding the hole. See E. Dagotto, Rev. Mod. Phys. 66, 763
(1994).

"Already on the classical level, condensates are found which are far more complicated than
antiferromagnets. It can be shown that in the classical spin limit, domain walls are spontaneously
formed to which the carriers bind and these ‘charged domain walls’ form a regular pattern in space:
the ‘striped phase’ (J. Zaanen and O. Gunnarsson, Phys. Rev. B 40, 7391 (1989)). These striped
phases have been observed recently in a variety of materials (e.g., J. M. Tranquada et al, Nature 375,
561 (1995)) and current theoretical activity focusses on the hard task of developing the quantum
theory of stripes.
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form a pattern which is periodic in space and static in time. This has to be explained,
starting from the quantum Hamiltonian (5.31),

Hpm = JY 5 Sz
7
1
= T (S 825+ 5058555+ 57549) (5.37)
0o

where the S*’s obey a su(2) Lie algebra,
s, 8| = 28i5;
i J

1 %7
|52, sF] = sto;
2, 7] = —876; (5.38)

What is the connection between the classical arrows and this algebra? Clearly, this
has to be related to a special kind of quantum-mechanical states of single spins which
can take the role of the Y'1’s in the construction of the classical state. Because of the
complicated form of the algebra, these states are less simple than the Gaussian wave
packets of the crystalline state. We need the ‘spin-coherent states’, which are defined
for arbitrary total spin S (section 2.5) as®

1)) = e #5153, ) (5.39)

where [S,S > is the maximum weight state, while |Q) describes the coherent su-
perposition of quantum mechanical spin states which is in fact the definition of the
classical spin. The classical variables {7;} now describe an arrow pointing at a point
on a sphere with diameter .S, and

Q = (sinfcosd, sin O sin ¢, cos f) (5.40)
is the vector doing this, parametrized in terms of the two Euler angles 6 and ¢.

To see that the set of states (5.39) indeed relates to classical spins, let us consider
the simple S = 1/2 case. As a first step, we express the eigenstates of SY (|o),) in
terms of the eigenstates of S,,

1/2,1/2 = = (1/2,1/2) -il1/2,-1/2)
1

1/2,-1/2)y = 5 (11/21/2) +4l1/2,-1/2) (5.41)

with S¥[1/2,+1/2), = £1/2|1/2,+1/2),, and these are used to evaluate,

~

Q) = 955172, 1/2)
e 1 i =i8
e = (#11/2,1/2), + e F1/2,-1/2))

8In the standard definition, an additional phase e is included, multiplying the state as a whole.
This factor is inconsequential in the present context.
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e TIPS <cos( )|1/2,1/2) +sm( )|1/2, —1/2)>
= e_zécos( )[1/2,1/2) + €7 sin(= )|1/2 ~1/2) (5.42)

The meaning of these spin coherent states becomes clear if one evaluates the expec-
tation values of the spin operators, S = (S%, S¥, %),

QIS0 = %(sin(ﬁ)cos(qﬁ), sin(6) sin(¢), cos(9))

Q (5.43)

(NN

Hence, the spin coherent states translate the su(2) algebra into the appropriate clas-
sical object. Keep in mind that these coherent states are quite unreasonable from the
perspective of exact quantum mechanics - they are introduced only, because nature
tells us that they might become reasonable in the thermodynamic limit, if a classical
state is realized.

= HKxcercise 5.12

Having identified the Y1’s, it becomes straightforward to construct the wave function
of the classical spin condensate. For S = 1/2 we might as well write the spin coherent
state in terms of the fermion operators, describing the localized electrons,

2 —i%y 6- ity 6-
Y;(QZ) = ez cos(;)ci +e7T sm(;) L (5.44)
and the wave function of the classical spin system is (/N is the number of lattice sites),
0%,({2}) = 1YY (%) |vac) (5.45)

It follows directly from (5.43) that the classical energy of the Heisenberg Hamiltonian
(5.37) is given by (in fact, for arbitrary S)

Hew = (950} Hapinl 02,({02)))
= JS*Y Q-5
05
= Js? Z; (sin(ef) sin(f;, ) (cos(¢y) cos(dy, 5) + sin(¢y) sin(gy, 7))+
cos(8;) cos(bs, 5 ) (5.46)

— Bxcercise 5.13

The classical ground state now depends on the lattice, the details of the couplings,
etcetera. Considering cubic lattices and nearest-neighbour exchange couplings, there
are only two possibilities:
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(1) J < 0 : the energy is minimized by the configuration of (Vs where all arrows

point in the same direction, with an energy Ey = —2%£|J|S%. This is the ferro-
magnetic state. Choosing the z-axis as preferred direction, the order parameter
is simply
1
Oru = (873 82(8°) (5.47)

)

(ii) J > 0: the nearest-neighbour arrows align in an antiparallel fashion. A cubic
lattice is bipartite: it can be divided in two sublattices (‘A’ and ‘B’), where
the sites on the A sublattice only have B sublattice neighbours, and vice versa.
Hence, all magnetic bonds are satisfied if we take the spins to be parallel on the
sublattices, while the spins on the A sublattice have the opposite orientation
from the spins on the B sublattice. The classical ground state energy is the same
as in the ferromagnetic state, and this state is called the antiferromagnetic of
Néel state. The Néel (or ‘staggered’) order parameter is, again taking the z-axis
as a reference,

1
Oarm = N@Ol Z 57 = Z S§|@0> (5.48)
icA B

On a square lattice these states look as follows,

(a) (b)

—_ > =
—_— > =
il
— >

(N O O A I

Figure 5.4: Ferromagnetic- (a) and antiferromagnetic (b) condensates.

As long as the exchange interactions have negative signs, the ferromagnetic state is
always found, regardless the type of lattice. This is difterent for antiferromagnets.
For positive J’s one needs a bipartite lattice to stabilize the Néel state.

—= Hxcercise 5.14

The ferromagnet as an exact quantum state.

In the ferromagnet as well as in the antiferromagnet, spin-rotational symmetry is
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broken. Individual spins cannot rotate freely anymore, although the absolute orien-
tation of the order parameter is still undetermined: we expect zero-modes, having a
long wavelength limit where the spin system as a whole rotates freely. Despite this
similarity, these states are completely different fundamentally. As will be proven in
the next section, the Néel state is not an eigenstate of the Hamiltonian, in the same
sense as that crystals or superconductors are not diagonalizing Hamiltonians, and
it will become clear soon that the Néel state shares the universal properties of the
classical state (like a linear mode spectrum, etcetera) with these other condensates.
The ferromagnet is, however, very different and in fact exceptional: the ferromagnetic
state 1s an eigenstate of the Hamiltonian! This is very easy to understand. We are
free to choose the microscopic spin quantization axis in the same direction as the
direction of the spontaneous magnetization. The z-component of the collective spin
state becomes as large as possible: 37 S#[S;tNS) = NS|Si:NS) and this implies
that this state is also an eigenstate of Sfot >; 5%, with $' = NS. In fact, the ferro-
magnet at zero-temperature is one of the very few exact macroscopic quantum states
which exist (have been identified?) in nature. This exactness of the ground state
leads to a number of consequences which makes the ferromagnet rather outstanding.
First, it is not necessary to study quantum fluctuations because the ground state is
an eigenstate and all off-diagonal matrix elements between the ground state and the
remainder of the universe are zero. Secondly, the ferromagnet still carries collective
excitations which look like collective modes (‘spin waves’) but are actually quite dif-
ferent. These ‘modes’, again corresponding with the lowest lying excitations of the
system, are easy to calculate. We consider S = 1/2 and the vacuum is

N . tot __ N

5 M = 5 ) (5.49)
We now consider the set of N states, derived from the vacuum by flipping one spin
somewhere on the lattice,

i) = S;7|0) (5.50)

These are states characterized by S** = N/2 and M** = (N —2)/2. The Hamiltonian
acts as follows

|0) = Hfavcli“vac.) = [I5%e =

],

HspmlﬂZ(NE0+Z|J|)|7>—27| +6) (5.51)

§
This problem is easy to solve, because there are no matrix elements to states living
outside the single spin-flip Hilbert subspace (5.50). Fourier transforming (5.51),

|7) \/_Ze“”h (5.52)

diagonalizes the Hamiltonian,
Hein|§) = (NEo + hwg)|q )

= 1
hwg = 2|J|D_ sin’ (5%) (5.53)
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= Excercise 5.15

For small ¢ the dispersion becomes,
hw, = cq* (5.54)

Instead of the linear mode dispersions of the genuine classical state, the ‘magnons’
of the ferromagnet show a ‘particle’-like (¢*) behaviour! Notice that the theory of
ferromagnetism is only simple if very few of these magnons are excited. If temperature
is raised, these magnons occur at relatively high densities and they interact rather
strongly with each other. It turns out that this is much harder to describe than the
finite temperature quantum-antiferromagnet®. In the remainder of this chapter we
further ignore ferromagnetism. Let us return to anti-ferromagnets.

Classical modes of the antiferromagnet

Since Néel condensates belong to the same general class as crystalline solids, we antic-
ipate again the existence of modes. Different from the crystalline state, these modes
are now a consequence of the breaking of spin-rotational symmetry. Physically, they
represent precessional motion of the spins around the Néel ordered state. As in chap-
ter IV, let us first study the linearized classical dynamics. Let us directly consider
the quantum-mechanical equations of motions - as a general rule, one recovers the
classical equations of motions if the operators are afterwards interpreted as the clas-
sical variables. Consider the time evolution of the flip operator St on a particular
site,

Sf = [S~ Haypin (5.55)
; p

= T [— St g S++S+ Sf] (5.56)
We assume the Néel order parameter (5.48) to be oriented along the z-axis, and in the
classical limit all spins are pointing, say, upward on the A sublattice and downward
on the B sublattice. In this limit we can therefore take S* — +5 on the A sublattice
and S* — —S on the B sublattice. This is substituted in (5.56) and we find the
equations of motion for the spin flips on the two sublattices to be

JS

Sty = =St + BT A (5.57)
JS

Sta =~ TS+ LSl (5.58)

As in the case of the lattice vibrations, we write

St p = vas ¢ Tinemer) (5.59)

9For further reading, the book by D.C. Mattis, ‘The Theory of Magnetism I’ is recommended.

135




we find the dynamical matrix of this problem to be

2JS —wg  2JSvy ug \
( —2JSy; —2JS —wg ) ( Uup ) =0 (5.60)
with

T e (5.61)
5

Diagonalizing (5.61) yields the dispersion relation

wg = 2J8\/1 =~} (5.62)

= Excercise 5.16

These are the spin-waves (or ‘anti-ferromagnons’) and it can be checked that they
describe infinitisimal amplitude, precessional motions of the spins. Their general
behaviour is very familiar: in the limit ¢ — 0 they correspond with the Goldstone-
mode with w = c¢qg and a spin-wave velocity ¢ = zJS. Although the language is
different, this repeats precisely the story of the previous chapter.

Quantizing the spin-waves: Holstein-Primakoft.

As in the case of the crystals, there is no a-priori reason why the classical dynamics
of the previous paragraph should make sense. This is actually a more interesting
issue in the context of spin. Harmonic oscillators follow naturally in the case of
crystals because of the Heisenberg algebra: momentum and position are the conjugate
variables of the particles and one only needs to discover a harmonic potential in
the collective problem. In the present context, spins do not know about [p,z], and
instead all one has is the su(2) algebra. It is nevertheless possible to extract harmonic
oscillators from spins, by a somewhat shaky procedure discovered by Holstein and
Primakoft.

It starts out with the observation that harmonic oscillator bosons and spins have
a ladder-like spectrum in common. The bosons have eigenstates |n) with n a non-
negative integer (ne{0,1,2,---,00}). For a given S, the spectrum of single spin states
is characterized by S%|S,ms) = ms|S, ms) with my = S5, —-1,---, =5+ 1,-S5, in
total 25 +1 states. These two spectra have in common that the jumps involve integer
numbers: Am is also an integer. Starting with the maximum weight state, the action
of S~ looks similar to the action of a boson creation operator,

S7IS,msy ~ |S,ms—1)
biin) ~ |n+1) (5.63)
There is, however, a fundamental difference. The spectrum of harmonic oscillator
states is unbounded from above, while the spin spectrum is bounded - it stops if S~

hits the minimum weight state: S~|S, —S) = 0. The dimensionality of the Hilbert
spaces of spin- and harmonic oscillator problems is completely different! This should
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in principle give rise to fundamentally different physics: this is the problem. On a
formal level, this problem can be circumvented by the introduction of a projection
operator which removes all harmonic oscillator states with n > 2.5 from the boson
Hilbert space,

P=1-— > |n)n| (5.64)
n=25+1

This is as dirty as it looks. Later on we will find good reasons to not worry about
these projections. The manipulations which now follow are only valid in this projected
space.

We take the maximum weight state as a reference to write,
St = — blb; (5.65)

where the b!’s are associated with a boson: in the absence of a boson S#|0) = 510),
one boson present S%[1) = (S — 1)[1), etcetera. We now need other operators, in
terms of bosons, which form together with (5.65) a su(2) algebra. The answer is !

, bib;
-+ . 5 PRI A
St o= - (5.66)
ol
" — z 3 [k
5 (2538} A1 - 2 (5.67)

It is easily checked that the ‘Holstein-Primakoff transformed bosons’ (5.65-5.67) do
form a su(2) algebra in the projected boson Hilbert space.

Let us apply this transformation to the antiferromagnetic quantum Heisenberg prob-
lem (5.37). We anticipate on the existence of Néel order. On the A sublattice we
can take the |S,S) states as the vacuum. However, on the B sublattice it has to
be (S?) = -5, en here we cannot use (5.65) directly. This is simple to cure: rotate
the quantization axis of the spins on the B sublattice by § = 180° with regard to he
x-axis such that M, =-S5 — 8

S;eB - S;eB (568)

SZEB — S;EB (5.69)
and the Heisenberg Hamiltonian becomes,

Hypin = J 5 [~858%, 5+ 5(S254, 1+ 5752 (5.70)

5

This allows us to substitute (5.65-5.67). Next to terms bilinear in the bosons, one finds
also terms of the form b7b'bb (and higher order), describing boson-boson interactions.

100ne needs the Schwinger boson formalism to derive this directly. See D. C. Mattis, 'The theory
of Magnetism I’
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These are the equivalents of the anharmonic terms in the phonon problem. Also in
this case, they can be neglected if the interest is in the long wavelength properties.

= BExcercise 5.17

Neglecting the boson interactions, the substitution yields

HEER — Z[ S + S(blb; + bl by 5+ BIBL - <+ bibz,5)] (5.71)
_ 2 the 4 ot fpt
S —ENJS ST 3 (bl + b b5+ Db, + bib 5) (5.72)
i5

LSW is an acronym for ’linear spin waves’. The classical energy is recovered, and in
addition a fluctuation term is found, characterized by pairs of bosons. This term also
contains combinations of two creation- and two annihilation operators, next to the
usual bilinears. We need the Bogoliubov transformation of section 2.4!

The bosons are transformed to momentum space,

ikaipt
2 bE (5.73)

L

1
7N
and the Hamiltonian is in & space,

L 1

B NJS2 + 2SJZ (bLbs + 0! b_ +vp(bLb! -+ b_gbg)) (5.74)
k>0

The second term is diagonalized by the boson version of the Bogoliubov transforma-
tion (2.108-2.110),

ap = cosh(up)by + sinh(u,;)bT_E (5.75)
al . = sinh(ug)b; + cosh(u,;)bT_E (5.76)
and the inverse tranformation

by = cosh(up)ag — lIlh(U,E)CLTE (6.77)

o' . = —sinh(uz)a; + cosh(u;)a TE (5.78)

In analogy with phonons uz = u_g. Substituting (5.77,5.78) into (5.74) and insisting
that the transformed Hamiltonian takes a diagonal form yields a condition on the
up’s,

tanh(2uz) = v; (5.79)
and the Hamiltonian becomes in diagonal form
1
HEW = —NJS(S + 1)+ ) hwg (a Lap + 2) (5.80)
k>0
with
hwp = 2JS\/1 =72 (5.81)

138



= Excercise 5.18

Finally, let us calculate the Néel order parameter (5.48). We assumed that all sites
on a particular sublattice are equivalent, and because of the rotation (5.70),

Oparm = Z S+ 5%)
ieA ieB
= ()
= S—(blby) (5.82)

K2

where the last line follows from (5.65). When the local boson states would be unoc-
cupied, we would recover the classical Néel state, with order parameter magnitude
S! Notice that the existence of the order parameter is hard wired in the Holstein-
Primakoff transformation itself. It is better to view this in the reverse order: if the
order parameter exists, the transformation yields a well behaved theory, in the sense
that no infinities show up in the perturbation expansion. In the absence of Néel
order, the theory in terms of the bosons becomes highly singular and rather useless
- I come back to this in a moment.

It is again expected that the Gaussian fluctuation is the most dangerous one. The
order parameter fluctuation is nothing else than the local boson occupancy of (5.82)
and on the Gaussian level at zero temperature,

blb;
§S = % (5.83)
]
— 55 - {0kbe) (5.84)
k

1 1
— Z sinh?( =3NS ( 1_—7% - 1) (5.85)

Making use of (5.78) and (5.79) to evaluate the expectation values of the bare boson
occupancies.

Despite the different appearance of the formalism, we have obtained a physical picture
which is in qualitative respects identical to what was found in the context of the
crystalline state:

1. Although somewhat hidden in the formalism, the above manipulations are con-
trolled by the finiteness of the Néel order parameter. In the context of crystals,
we found that the classicalness of the state was at the end controlled by the
largeness of the atomic mass. 0.5 has the same status as the mean square fluctu-
ation /7, discussed in section 4.6, and we find that the prefactor (dimensionless
coupling constant) is now 1/S (5.85): the quantum fluctuation of the Néel state
vanishes if the size of the spin becomes infinite - S is much like a mass. It is
easy to understand why the Néel state becomes more classical for larger spin.
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We have first to identify a second way of approaching the classical limit. A
subset of the classical states (5.39) is formed by the eigenstates of the total
z-component of the spins: S7, = >7-S7. These states are also eigenstates of the
Ising Hamiltonian which only contains the S? operators: Hpging ~ > <ijs Sij.
and the ezact ground state of the antiferromagnetic Ising model is the Néel
state oriented along the z-axis. The spin-flip terms ~ S;" Sy appearing in the
Heisenberg model are therefore responsible for the quantum-spin fluctuations
- see (5.65-5.72). What is the relationship between largeness of spin and the
effects of spin-flips?

S=1/2 s‘i“sji ]
by by e

S>>1/2
s“iL sjf
/ /

Figure 5.5: In the case of S = 1/2, the fluctuation term in the Heisenberg Hamiltonian
causes o complete reversal of two spins, while for large S it only gives rise to a small
‘displacement’.

Consider first S = 1/2. When S} 557, 5.4 acts on the Néel state, it reverses the
order parameter locally. On the other hand, for large spin the spin-flips only
cause a small ‘displacement’ of the Néel order. [(S#)| is reduced from |S| tot
|S| — 1, as illustrated in figure 5.5.

2. From (5.81) it is inferred that the dispersion relation of the antiferromagnons is
identical to that of classical spin waves (5.62). Stronger, the large wavelength
behaviour is identical to that of acoustical phonons: w(k) = ck. The deep reason
is that antiferromagnets and crystals (as well as superconductors and Fermi-
liquids) belong to the same class of classical condensates with long range order,
and the zero-modes are a generic consequence of the nature of this vacuum. We
save us here the effort to calculate the magnon-lifetime - we are sure that this
will not pose a problem.

3. Let us now consider the order parameter fluctuation 4.5 (5.83-5.85) in more
detail. The integral in (5.85) is again dominated by the long wavelength modes
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because /1 — 2 ~ k and the asymptotic behavior is governed by

_ 1 | [ dik

As in crystals, 4.5 is again divergent in d = 1 and Néel order cannot exist in
one dimension. In larger dimensions the stability of the Néel state is again a
matter of numbers.

Different from the crystalline case, the existence of Néel order can be proven in large
regions of parameter space. Before we turn to this subject, let me comment on what
happens if the Néel state does not survive. This is generically the case in one space
dimension, as can already be inferred from the simple Gaussian argument (5.86). The
investigation of one dimensional spin systems is one of the frontiers of physics: one
finds ‘quantum spin liquids’ which can be quite a bit more interesting than the floating
solids as explained in section 4.6. What was the crucial step in the ‘derivation’ of
the Néel state? We assumed that the density of bosons (or spin flips) is low, which
allowed us to make the step (5.70) to (5.71). We found this to be indeed the case for
large S. For small S this is in principle no longer the case. In higher dimensions, the
Néel state still wins. This is not as well understood as one would like and fortunately
we can rely on some mathematical results which are summarized in the next section.
In one dimension, the fluctuations get truely out of hand. The local displacements are
no longer small and one has to worry about anharmonicities. Much worse, if the spin
deviations become large it is no longer reasonable to close the eyes for the completely
different dimensionality of the Hilbert spaces of bosons and spins. In terms of the
bosons, the fluctuations would give rise to a massive invasion of the unphysical parts
of the Hilbert space! This cannot be repaired with perturbation theory, because one
needs infinitely large interactions between the bosons to get rid of these states: the
problem becomes ‘non-perturbative’. The spin wave bosons become irrelevant for the
physics of these systems, and instead one finds a host of peculiar ‘quantum-worlds’. A
discussion of these phenomena would fill up most of the (non-existent) second volume
of this lecture series'!.

5.4 The Néel state by theorem.

Next to causing conceptual difficulties, the smaliness of the spin Hilbert space has a
benefit: the powerfull machinery of mathematical physics has a chance to succeed.
Accordingly, spin systems have been high on the agenda of this discipline for quite
some time, with some remarkable outcomes. It has been proven that (a) the exact

M7 refer to the books by E. Fradkin: ‘Field theories of condensed matter systems’ (Addison-Wesley,
Reading, 1991), and A. Auerbach ‘Interacting electrons and quantum magnetism’ (Springer, New
York, 1994). A pedestrian introduction to the space-time condensation underlying the incompress-
ible fluids can be found in: J. Zaanen, ‘Quantum werelden, groot en klein’ (jaarboek akademie-
onderzoekers, Amsterdam, 1996: in press).
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ground states of antiferromagnetic nearest-neighbour Heisenberg systems are non-
degenerate spin-singlets for all values of S and in all dimensions'? and (b) that Néel
long range order exists in d > 3 for all values of S'® and in d = 2 for § > 3/2!1,

= BExcercise 5.19

Giving it a minute of thought, this should sound like a paradox. Néel states are
never eigenstates of total spin: (37 5%)%. This is simple to see. Take for instance the
two-spin Heisenberg problem. We learned in section 2.5 that the singlet eigenstate
~ (1/v/2)(T1]2 — [1T2): this is a coherent superposition of the two Néel states con-
structed from two spins. The macroscopic singlets, as proven to be the exact ground
states by Lieb and Mattis, are much more complicated than this simple example,
but they share the property that they are linear superpositions of large numbers of
Ising-like configurations. The Néel condensate violates total S, in the same sense as
the crystalline state violates total momentum. How is it possible that one can proof
at the same time that the Néel state nevertheless exists?

The aforementioned proofs are far too involved to be reproduced here. The essence of
the physics can, however, be seen from a model which is mathematically far simpler
than the Heisenberg model, the so-called Lieb-Mattis model (N is the number of
lattice sites):

Sao = X5

ieA
5 = L%
ieB
2J pd -
HLM = 'NSA : SB (587)

Every spin on the A sublattice interacts with the same strength with all spins on
the B sublattice, and vice versa. Because every spin communicates with an infinity
of other states, this really helps the collective (= classical) behaviour and this is the
source of simplifications. Notice that the exchange coupling ~ 1/N in order to keep
the system extensive (Ey ~ N). We introduce the total spin S,

§: §A+§B (5.88)
and it follows directly that
P o
Hiw =5 (8- 3% -32) (5.89)

We now observe that $2, §%, §2 and S all commute with the Hamiltonian, and
with (5.89) we have solved the problem! The eigenstates are completely specified by
|S4,SB, S, Ms) (in an obvious notation) and the exact eigenvalues are

E(S, Sp, S) = % (S +1) — Sa(S4+1) — S5(Sz +1)] (5.90)

12E. H. Lieb and D. C. Mattis, J. Math. Phys. 3, 749 (1962).
13F. J. Dyson, E. H. Lieb and B. Simon, J. Stat. Phys. 18, 335 (1978).
14E. Neves and J. F. Perez, Phys. Lett. 114A, 331 (1968).
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Assuming spin 1 (it works for any spin) and a bipartite lattice, the ground state
becomes the state with Sy = Sy = N/2 (maximum S on both sublattices) and total
S = 0, a singlet state! The energy of this state is By = —J(N/2 + 1)".

Hence, it is easy to proof that the ground state of the Lieb-Mattis model is a non-
degenerate singlet. We also observe that the operator measuring the staggered mag-
netization,

My=2584— 55 (5.91)

does not commute with the Hamiltonian. This is a fluctuating quantity and we are as-
sured that the Néel order parameter, corresponding with the ground state expectation
value of M, (5.48) has to be zero. At the same time, the classical analysis (magnons
around the Néel state) would actually indicate that the quantum fluctuations are
harmless: (5.87) should be Néel ordered. Because of the long range interactions, the
spectrum of spin waves becomes gapped, and even dispersionless and it is even so
that the magnons do not mix into the pure Néel state (Oapp = 1). At first sight,
one would think that there has to be something really wrong with our understanding
of the classical state!

= FExcercise 5.20

The confidence in the classical state can be restored, but this involves a very subtle
argument. We start out with adding to the Hamiltonian a symmetry breaking term,

H = Hpy — B,(S5 — S5) (5.92)

This extra term causes the Néel state, oriented along the z-axis, to be inequivalent
from all other states. In the presence of the ‘staggered’ field (or ‘order parameter
field’) By there is no longer a symmetry reason for the non-existence of the Néel order
parameter: the Néel state is stabilized by hand. Fields like B (or equivalent fields
like the ‘crystalline’ field forcing atoms to be on particular positions in space) do not
exist in nature and (5.92) looks rather unphysical. The subtlety is, that the existence
of the classical state depends on the order in which one takes the thermodynamic
limit N — oo and the limit B, — 0. More precisely,

WD, S (ol M 2a) =0
lim hm (Qo[M{|®o) = 1 (5.93)

where |¢o) now corresponds with the exact quantum ground state. This is rather
easy to proof for (5.92). We consider again S = 1 and it follows directly from
(5.90) that in the absence of the staggered field: (i) it costs an energy of at least
O(J) to change the magnetization on one of the sublattices!’. (ii) Initially, the states

15This turns out to be a crucial step in the original proof of Lieb and Mattis of the singlet nature
of the ground state. The remainder of the proof, extending to whole classes of models, relates to
the unique nodal (sign) structure of this kind of singlet wavefunction.

16This was discovered rather recently, see: C. Kaiser and I. Peschel, J. Phys. A 22, 4257 (1989);
T. A. Kaplan, W. von der Linden and P. Horsch, Phys. Rev. B42, 4663 (1990).

17This is actually the magnon ‘mass’ originating in the long range interactions, see excercise 5.20..
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with S different from zero are separated by energies of order J/N. Since E ~ S*/N,
there is an infinity of states becoming degenerate with the singlet ground state if
N — oo and one needs S ~ /N before these states become true excitations'. The
essence of what follows is, that the Néel state can be reconstructed from the subset
of eigenstates of the Hamiltonian in the absence of the staggered field, which become
degenerate with the ground state singlet in the thermodynamic limit.

Only the set of eigenstates (5.90) has to be considered, characterized by maximum
sublattice spin, S4 = N/2,Sg = N/2, and a total Mg = 0. This leaves only S as
a variable quantum number, and we abbreviate |S) = |S4, Sg, S, Ms). For a finite
staggered field, these states are no longer eigenstates of (5.92). One has to determine
the matrix elements of the Néel operator in the space of states |S). This involves
a rather tedious excercise in vector addition, but the result is known. Only states
where S differs by unity are coupled, by the matrix element,

L N+1)?— 3

As will become clear later, the important states are the ones with 1 << .S << N (for
N large), and (5.94) simplifies to (S|MZ|S — 1) = —N/2. In this space of low lying
states, (5.92) becomes,
N J S NB,
He ) ['S>T<Sl - (|S)(S + 1| + h.c.) (5.95)

S=0

counting from the ground state energy in zero field Ej, and again assuming that
the smallest S states are unimportant. (5.95) looks like a simple tight-binding prob-
lem, except that the diagonal energies increase quadratically with S: this is actually
a discrete version of the harmonic oscillator. Because the splittings between the
states become very small for large N we might as well take a continuum limit. The
eigenstates in the presence of the field are written as |¥) = Yo ®(5)|S) and the
Schrédinger equation becomes,
N JS?

~5 Bo(®(S = 1) + &(S + 1)) + - 8(S) = €2(S) (5.96)

In the continuum limit,

520(S)

P(S+1)+d(S—1)—29(5) — 552 (5.97)
and (5.96) can be written as
16%®(S) 1 ,_, B
—§W+ ¥ S°®(S) = v®(S) (5.98)

18These states get lost in the standard classical analysis - they are believed to be present in real
magnets, crystals, superconductors, etcetera. This is no problem, because they do not contribute
in the thermodynamic limit. Their contribution to the partition function Zip;, = Zg:n(QS +
exp(—BE(S)) and it is easy to show that 8Finin = (1/N)InZipin — 0if N — oo. This is called a
‘thin spectrum’.
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with the parametrization,

PR S (5.99)
Ny/B,/J
_ (e/J)+ N(Bs/J)
v = N(B.7 (5.100)

This is nothing else than Eq. (2.40) (with m = i = 1) and we directly infer the
spectrum of the states in the presence of the field: v, = (n+1/2)w. We have now to
realize that S is positive definite, and only the harmonic oscillator wavefunctions with
a node at the origin are admitted. The ground state is therefore the state with n =1,
corresponding with a wavepacket with width AS ~ N 5(B,/J )i and vy = 3w/2. The
energy of the system is

3 55
E(]+€:E0—NB5+§ BSJ (5101)

From this expression, the dependence on the order of taking the limits (5.93) becomes
clear. The first limit is trivial: we of course recover that the ground state is a singlet
by first taking By, — 0, before taking N — oco. The other limit is the interesting
one: if one lets N — oo in a finite field, the last term can be neglected and one finds
that € = NB,: this is only possible if the Néel order is fully developed because this
amount of energy can only be gained in a fully ordered Néel antiferromagnet.

= Excercise 5.21

The above offers a rigorous way of understanding the phenomenon of rigidity. The
argument is remarkable: in terms of the exact eigenstates, a classical system is char-
acterized by a large number of excitations which become nearly degenerate with the
exact ground state in the thermodynamic limit. Although these states are invisible
in the thermodynamics, they allow for the existence of classical order because only
a small (on the scale of N) subset of those is needed to reconstruct the symme-
try broken state. In the present example, only the ~ N2(B,/J )i lowest states are
needed, out of the total Hilbert space build from N S = 1 spins with dimension 3".
The staggered field is of course unphysical and is only introduced as a mathemati-
cal device to demonstrate, via (5.93), that the ordered state becomes degenerate in
the thermodynamic limit with the exact state satisfying the symmetry requirements.
Nature might quite well be in the exact singlet state. The above demonstrates that
the symmetry restoring fluctuations, making up the difference between the Néel state
and the singlet, are of a highly collective kind. They correspond with a uniform pre-
cession of all the spin together and since the energy differences for finite /N between
the Néel- and the exact state are of order J/N, the collective precession frequency is
very, very small. For instance J ~ 10'4s™! and N ~ 10% yields 1/w ~ 100 years.

5.5 Weak coupling: condensation in momentum space.

Let us descend again to the level of the (semi) classical theory. Both in chapter IV
and in this chapter, systems have been discussed where the interaction energies are
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much larger than the kinetic energies associated with the quantum-mechanical zero-
point motions of the particles. For this reason, the latter could be taken into account
perturbatively, giving rise to small corrections on the scale of the interaction energies.
A major achievement has been the discovery that the classical paradigm of section 1.2
also applies to the opposite limit, where the quantum kinetic energies dominate over
the interaction energies: the ‘weak coupling limit’. The discovery of the microscopic
theory of superconductivity by Bardeen, Cooper and Schrieffer (BCS) has played a
key role in this development and in hinsight one could claim that they really deserved
their Nobel price because they showed how to construct the classical state from the
microscopic quantum soup.

The reason to introduce weak-coupling theory in the context of magnetism is that
anti-ferromagnets both occur in their weak coupling (‘spin density waves’) and strong
coupling versions in nature - crystals only occur in the strong coupling limit, and
superconductors only in the weak coupling limit. Magnetism is the ideal playing
ground to demonstrate the equivalence of the macroscopic physics in both limits: at
long wavelengths and small energies it is all the same. The difference is that in weak
coupling the classical features are first seen at a length scale (the ‘coherence’ length)
and a time scale (the ‘gap’) much larger than the atomic scales. Up to these scales one
has to take quantum-mechanics very seriously - beyond these scales it is (classical)
business as usual. This complicates the formalism appreciably. In the general case,
it 1s always worthwhile to first consider the strong coupling limit, to understand the
general nature of the collective state, to continue the theory subsequently to weaker
couplings. The benefits of this approach will become particularly obvious in the next
chapter dealing with superconductivity.

Mean-field theory.

In the weak coupling limit, the kinetic energy dominates and the natural starting
point is single particle momentum space. In forming the classical condensates, one
needs now coherent superpositions of the single particle momentum states in order
to construct the YT states needed for the condensate wave functions. Although the
wave functions can be constructed, this is technically rather clumsey and a much
more efficient approach exists: semi-classical mean-field theory, or ‘Hartree-Fock’®.
Let us illustrate this approach in the context of spin condensates. The starting point
is again the Hubbard model,

H=tY el Cog T U D nzng| (5.102)
o i

The central step in mean-field theory is straightforward. The existence of Néel order

is anticipated. Orienting the staggered order parameter along the z-axis, its presence

19The vocabulary is ambiguous: this amounts to the classical level of section 1.2 and one still has
to calculate the fluctuations around these states, as we will be explained later. For this reason one
would like to call this ‘classical mean field theory’, but this is usually associated with the mean-field
theories in classical statistical mechanics. The best language is the field-theoretic one: ‘integrating
out the fermions around the classical saddlepoint of the Hubbard-Stratanovich auxiliary fields’. See
Fradkin’s ‘Field theories of condensed matter systems’.
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implies that the operator S? acquires a finite expectation value (‘vacuum amplitude’)
on every site. In terms of the fermion operators (recall (2.142)), this means

1
(57) = 5 ((nzg) = (ng)) #0 (5.103)
One anticipates that on the the A sublattice (n;) > (n;) and on the B sublattice
(nz;) < (ng), or vice versa. The crucial step in mean-field theory is to use the
finiteness of the vacuum amplitudes to derive a new, effective Hamiltonian where the
important effects of the interactions are ‘eaten by the order parameter’. We define

ng, = O, + 60, (5.104)
O;, is the scalar vacuum amplitude,
Oz, = (ng,) (5.105)

and 60;0 is the operator describing the quantum fluctuation of O; . These play the
same role as the spin- or lattice displacements as we discussed in the strong coupling
cases. Explicitely,

605, = nz, — (nz,) (5.106)
Using (5.104,5.106), the Hamitonian can be rewritten as,

_ t ., Y 50
60 i

As long as the order parameter exists, it should be possible to treat the effects of the

fluctuations perturbatively - as in strong coupling this has to be checked afterwards

and this will be discussed in the next section. The classical limit is reached if the

fluctuation term 007 00); is neglected. This defines the ‘mean-field Hamiltonian’

gME — t; C;.[U Ciis T UZ (O;Tn;l + Ofln{T - OfTOfl) (5.108)

o b
o %

With these simple manipulations we obtain a remarkable physical insight. We learned
to respect the difficulties coming from the combination of the interaction term ~ U
and the kinetic term ~ ¢ in section 5.2. As long as the order parameter is finite, (5.107)
is far simpler. The difficulties associated with the electron correlations, in so far they
are not ‘eaten by the order parameter’, are absorbed in the term fluctuating the order
parameter and we learned how to handle those. What remains is (5.108): the effects
of the electron-electron interactions have been absorbed in simple single electron
potential scattering terms, representing the scattering of the electrons against the
order parameter. (5.108) is an independent electron (‘band structure’) problem which
can be solved in principle. The mean-field structure of the Hamiltonian is equivalent
to the statement that the classical state corresponds with single determinant wave
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functions (Eq. 1.3, section 1.2). The beauty is, that much of the work of sections
(5.2) and (5.3) is now done in one simple, algebraic manipulation.

(5.108) can be written in a more transparent form by introducing scalars which refer
directly to the local z-axis spin- (%) and charge (27;) density

. 1
& = 2 (Oﬁ - Oﬂ) (5.109)
B 1
=3 (OZT + Oﬂ) (5.110)
because
OZT = ny+ Qf
i = 7_2,;— Qf (5.111)

the mean-field Hamiltonian becomes

=i} @, ;+M+UZ( (ng + nz)) — Qi(ng; — nzy) — 72 + ()7 (5.112)

0o
This should somehow relate to the classical spin Hamiltonian (5.46) and at first sight
it seems that the spin-rotational invariance got lost. In the above ‘decoupling’ one
has to take care that one respects the symmetries of the original Hamiltonian. In the
present case, thls means that one should also consider the ordenng of the interaction

term ~ —U Y- CT Zlcj'.chfT Such a term is decoupled by c~ (= 85 = F +7F

and c~l ¢y (= S7) = Q; + 052, The interaction term becomes in this spin-rotational
invariant decouphng,
— - +.t =t
U Z nyny, = U Z: (n;(n;T +nz) — Q(ng — nz) — & ¢ — S ce
-7z 4+ (Q6)” + QF Q- + fluctuations) (5.113)

It is easily checked that this decoupling obeys spin rotational invariance.
— KExcercise 5.22

Notice also the presence of an average charge density (7i;). Except for some ex-
ceptional cases, this average always exists. The reason is an underlying discrete
symmetry in the charge sector, as will be further explained in the next chapter.

Given (5.112) or (5.113), how to proceed? In fact, this is nothing else than a conve-
nient reformulation of the general procedure of section 1.2:

(i) Choose a set of classical variables 7 and Q; which can in principle be different
on every lattice site with the only restriction that 7, || < 1/2: this is the
classical field configuration.

(ii) Every choice of classical variables, (5.112,5.113) defines an independent electron
problem. The eigenstates of this problem are therefore single-determinant states
- the ground state for every choice of classical field variables is nothing else than
3%, ({7, Q})) (eq. 1.8, section 1.2). Diagonalizing the effective independent
particle problem is called ‘integrating out the fermions’.
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(iii) Find the minimum of the classical energy Eq ({7, Q1) in classical field config-
uration space. In terms of the eigenstates of the independent particle problem,
the classical energy is simply the sum over the N, lowest lying single par-
ticle energies (‘band energy’), plus the contribution of the ‘potential energy’
~ U(=72 + Q?) In this minimization step one obtains implicit equations for
the classical variables which can be solved by iteration (compare with the dis-
cussion in section 4.1).

This procedure can be illustrated in the now familiar context of the half-filled Hub-
bard model on a (hyper)cubic lattice. In principle one should allow for every possible
field-configuration. However, for an arbitrary configuration the single particle prob-
lem becomes very complicated and this can be only handled numerically. In fact, the
half-filled case has been thoroughly investigated and it turns out that the ground state
indeed corresponds with the Néel state, with an uniform charge density. Hence, we
limit ourselves to the part of configuration space with 7i; = 7, V4, 2z = (0,0, +8), 4 ieA
and Q; = (0,0, —5),1 eB (staggered orderparameter in the z direction). 7 and €2 still
remain to be determined. From (5.112) it follows immediately that the up-electron
sees a potential ~ U(7 — ) on the A sublattice and ~ U(7+€2) on the B sublattice.
The down electron sees the same potential, except that the A and B sublatices have
been exchanged. The following band structure problem has to be solved,

B =S, & 1+5U+UZ( Alng +nz) F g —ngy) — 72 + Q) (5.114)
ibo i€A,B

This is very similar to the two-band models which were discussed in chapter III: it is
just a tight-binding model on a cubic lattice with a unit cell containing two sites.

Let us first consider the simple one dimensional case - one should not take this too
litteral, because this is precisely the case where the classical theory is bound to fail
because of the order parameter fluctuation. The up- and down electrons see the
following potential,

We learned how to obtain the bandstructure for a tight-binding problem of this kind
(Eq.’s (3.44)-(3.47)) and we find in k-space

k
HMF Z 2tcos(§)Z(CLkchk,,+h.c.)

3 o
+U (i — Q) (cfarcrar + chpycrny) + U+ Q)(chajcrar + chgrcenr)
+U(Q? — 7?) (5.115)

introducing A and B fermions living on the A and B sublattices. ke{—m, 7} is
defined in the new Brillouin zone with absolute dimensions {—3-, 7=} (a is the lattice
constant).

(5.115) is diagonalized by,

VIET = Cos gb;cc};AT + sin QSkcLBT (5.116)
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S A
Figure 5.6: Potentials as seen by the up- (full lines) and down (dashed line) electrons,
caused by the presence of the Néel order parameter in the one dimensional chain prob-

lem. Also the charge density of two tightly localized ‘spin-quasiparticles’ is indicated,
as they appear in the strong coupling limit (U >> t).

711T = sin ¢kCLAT = €05 ¢kCLBT (5.117)
Wy = cosdrclyy +sinducly (5.118)
'7/11 = sin ¢5/cC/TcBi — COS qbkcLAL (5.119)

associating 7, with the low lying (‘bonding’) occupied states, and ’7,10 with the high
lying unoccupied states. The Hamiltonian becomes in diagonal form,

HY' = 7 [wk_ (7, QYo + Wi (R, Q)%L,%] + NU(Q? — 7% (5.120)
ko

with (compare eq. (3.47))

k
wi(,Q) = Un+ \/UQW + 42 cos? 5 (5.121)

This represents the same band structure as the one shown in Figure 3.8b, where
the gap is now of order UQ, instead of |e, — &4|. Both bands are spin degenerate; a
difference with the discussion in chapter 3 is that the potential is now spin dependent.
For large UQ/t, the lower band now corresponds with the up- and down electrons
being mainly on the A- and the B sublattice, respectively (see also Fig. 5.6). At
half-filling, there is one up- and one down electron per (two site) unit cell, and the
lower lying band is therefore exactly filled.

We still have to determine 7 and €. The lowest lying band of eigenstates is precisely
filled up and the classical energy is,
(HY") 1 ¢ "

E(Rn,Q) = v = § 3w (0, Q) + U —n?) (5.122)



Making use of the fact that the problem is identical for spin up on the A sublattice
and spin down on the B sublattice to write the energy per lattice site. From this
expression we can already infer the energy balance. Due to the presence of the
antiferromagnetism, the occupied states are pushed downwards. This energy gain is
balanced by the potential energy term ~ UQ?. Minimizing (5.122) to Q and 7 yields
the ‘saddle-point equations’,

0E(n,Q) ~ 1 o .
o - ARl pu®=0 (5123)
SBE(R,Q) 18 _
o = WL me® =0 (5124)

One sees that these amount to implicit equations: €2 and 7 are given in terms of
functions of 2 and 7. Let us first consider (5.123). Because of (5.110), we can deduce
the answer without doing any calculation. We have assumed that the charge-density
2n is the same on every site. At half filling, we therefore should find 272 = 1 (one
electron per site). From (5.123) together with (5.121) it follows directly that,

1
n= N Zk: ( )

The Néel order parameter is less trivial. (5.124) together with (5.121) yields the
implicit expression for the order parameter amplitude €2,

1
. _ 1 (5.126)

2N 5 \/U2(22+4t2(:os“2“— u

or
1 /7r dk
2m Jo \/1 + ()2 cos? £

This equation can be solved by iteration - start with some value for 2 on the left hand
side of this equation to calculate the right hand side, and use this new value again
on the left hand side, etcetera, untill 2 no longer changes: (5.127) is an explicit way
of looking at the self-consistency requirement which was already discussed in section
4.1. The physical picture is actually quite similar.

=0 (5.127)

= Excercise 5.23

Let us first consider strong coupling: U >> t. This is very important: there is no
instance in the derivation leading to (5.127) that we demanded anything from U/t.
All we needed was the existence of the Néel state, and this is controlled by 1/5 and
the dimensionality. It is quite often claimed that the above mean-field theory is only
correct for small U/t (weak coupling) and this is a gross misunderstanding. It is
controlled by classicalness. I will now demonstrate that mean-field theory precisely
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reproduces the result of the exact strong coupling expansion of section 5.2, given that
the spins in the result (5.36) are taken to be classical.

(5.127) can be expanded for small t/U as

Q = —21—7T/07rdk [1—2(%)20082 g]
_ %(1 _ (_(J%)Z> (5.128)

In the limit +/U — 0, @ — 1/2, its maximum value, as one would expect. Let us
expand the classical energy (5.122) to the same order, making use of (5.125),

il 1 g U t k 1
E(E’Q) ~ ;/0 dk {5 - UQ(1+ 2(——UQ)2 cos? 5)] +U <§22 - Z)
U i , 1
= 5—UQ—U—Q+U<Q —Z) (5.129)

To lowest order in ¢/U we should take 2 = 1/2 (see (5.128)), and it follows that
E = —t?/U per site. This is identical to what we find from the exact expression (5.36)
for classical spins (S; — € = 1/2): J (S Siy5—1/4) — —JN/2 = —N#*/U! This
is no accident; for every possible configuration of classical spins {Q}, one will find
a one-to-one correspondence with the energies calculated form the exact expression
(5.36) and the mean-field energies.

= Bxcercise 5.24

Although in technical regards more awkward, one might as well look at mean-field
theory from the wavefunction perspective of section 1.2. Occupying the N lowest
lying states of the mean-field Hamiltonian amounts to writing the ground state wave-
function of the condensate as

|8%,(7, ) = eyl lvac.) (5.130)

Different from the real space single particle operators of the localized magnets or
crystals, the condensate is constructed from momentum space single particle states!
This is the generalization needed to understand superconductors and Fermi-liquids,
as well as the spin density waves which will be explained in a moment. For large
U/t, however, this reduces again to a real space affair. All the states in (5.130) are
separated from the other states by a gap which is much larger than the width of
the occupied band (fig. 3.8). Under these conditions, we can transform the set of
occupied states to obtain localized wave packets: Wannier wave functions. Consider
first U/t — oo: the low lying spin-up and spin-down states on the A and B sublattices,
respectively, are isolated from the rest of the universe by infinite potential barriers
(fig. 5.6). For large, but finite U/t, these localized states will start to leak out to
the high energy states on the neighbouring sites on the ‘wrong’ sublattice (see figure
5.6). These states can be written as,

R

At = Gear T [ 2= Civbent
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[2
1 — e 1
ryzeBl - CfeBl - U Z CZ_HE'GAL (5131)
§

and the wave function of the Néel condensate becomes in this limit,
[©8,(7,9)) = T4 i) lvac) (5.132)

Because a density of ~ (¢/U)? of down-spin electron leaks out on the up-sublattice and
the same amount of up-spin electron on the down spin lattice, the order parameter
gets reduced:  — 1/2(1 — (t/U)?*), compare (5.128). Ileave it to the reader to show
that (5.132), together with the recipy of section 1.2, is precisely equivalent to the
mean-field approach.

= FExcercise 5.25

What happens if the coupling is further reduced? We could in principle improve
(5.131) by spreading out the localized wave functions further and further: as long as
the gap is present it is always possible to construct Wannier states. This is, however,
quite clumsy and it is much more convenient to work in momentum space. We have
in fact already done all the hard work for the one dimensonal case and all what
remains is to solve (5.127). Imagine that we want to solve this equation by iteration
for a moderate or even small value of U/t. Let us start with the fully saturated
(strong coupling) value 2 = 1/2 on the left hand side. This would yield an 2 on
the right hand side which is smaller (e.g., (5.127)). We understand now why: the
wave-functions start to leak out to the wrong sublattices, thereby decreasing the
sublattice magnetization. This in turn makes the gap (~ UQ) smaller and in the
next iteration round the electrons spread out even further, further diminishing the
order parameter, etcetera - the similarity with the discussion in section 4.1 should be
clear. In essence, it involves a trade off between kinetic energy gain (the spreading of
the wavefunction), at the expense of an increased amount of double occupancy: if the
order parameter is large there is only one electron per site, and no double occupancy.
The question arises: if U/t is further and further decreased, is there a point where {2
vanishes? In the general case there is such a critical U/t where the Néel condensate
vanishes. The one dimensional case is, however, special: neglecting the collective
quantum fluctuations, € is finite for any finite U!

Let us consider the limit U/t — 0 in one dimension. It is expected that only the
states very close to E'r are affected, and in analogy with the Debye model for phonons,
the details of the electron states at high energies can be neglected. The states close
to Ep can be linearized. Consider the bands in the folded zone at U = 0 and
count momentum from kp = 7 (in units of 2a): k' = k — kr. The dispersion
wy, = 2|tcos(k/2)| can now be written as wy = vpk’ for the occupied- and —vrk'
for the unoccupied band (see Figure 5.7), with vp = |t| (or 2alt| in absolute units).
A high energy cut-off momentum k{ is choosen which reproduces the bandwidth:
v Fk;é) = 2t.
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Figure 5.7: linearizing the one dimensional tight binding bands (compare with figure
3.8).

With these assumptions, (5.126) simplifies to,
1 dk’'

B 1 ‘/*6
U 2wlop| Jo \/U2292+(k1)2
VF

il lvpky|

— ) h =
27T|UF|arcsm ( UQ ) (5.133)
such that
lvpky] _2nlt]
UQ=A = ————— ~4|tle” T 5.134
i = (5130

We have now to recall the discussion in section (3.2): we found there that at the
Brilloun zone boundary always a gap appears regardless the strength of the periodic
potential. In this case the potential is coming from the Néel orderparameter Ugx ~ UQQ
and the gap is twice this number. According to (5.134) this gap is finite for all U > 0!
At the same time, the orderparameter €2 is finite, although it becomes very, very small
for small U.

The form of the expression for the gap and the order parameter (5.134) is quite general
- we will see it back, for instance, in the form of the famous BCS-gap equation for
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superconductivity. It is crucial for the existence of the weak coupling instability that
the system is characterized by nesting: the gap opens everywhere at the Fermi-surface,
because the Fermi-surface lies exactly at the new zone boundary, associated with the
symmetry breaking. Under this condition, the band energy decreases initially linearly
in ©: all the occupied states closest to the Fermi-surface move downward with UQ2 and
this always outnumbers the potential term, which is quadratic in €2, for small enough
). The novelty is that the linear ‘driving force’ is multiplied by a very small number
~ exp(—=W/U) (W is bandwidth) - this is a consequence of the Pauli principle, which
has forced the electrons in large kinetic energy states, which are hard to localize.

Despite its smallness, the gap is still there in the weak coupling limit, and as long
as the gap spans the Fermi surface (as it does in d = 1) it is possible to construct
Wannier states of localized spins. The difference with the localized spin wave packets
in strong coupling (5.131) is their much larger spatial extent. Their linear dimension,
the ‘coherence length’ £, is estimated by,

£ w

S~ e (5.135)

Because the gap 2US) is a very small fraction of the bandwidth W, the coherence
length is quite large, typically like 1000a ~ 10*> nm. The orderparameter corresponds
therefore with a superposition of O(10°) overlapping single particle spin states! This
weak coupling antiferromagnet is called a ‘spin density wave’ (SDW): it is basically a
Fermi-fluid (metal) with a tiny wave of spin density superimposed on it. Notice that
these spin density waves also occur in one dimension at filling fractions, different from
half filling. The difference is that the nesting occurs now at different wave numbers
than 7/2a and instead of a simple doubling of the unit cell, a spin density wave is
found with a wavelength 1/2kp, which is not necessarily an integer multiple of the
lattice period (‘incommensurate density waves’). Next to these spin density waves,
one finds also charge density waves in one dimensional systems, which can be driven
by electron-phonon interactions, and/or attractive electron-electron interactions.

= BExcercise 5.26
= KExcercise 5.27

Despite the strongly delocalized character of the electrons, the collective state falls
still in the same class as the localized magnets at macroscopic scales. At energies
less than the gap or length scales larger than the coherence length, the electrons
‘disappear’ (because of the gap) and all what remains are the collective spin degrees
of freedom (magnons). The order parameter fluctuations behave qualitatively in the
same manner as in strong coupling. In fact, the fluctuations are strongly reduced in
weak coupling as will be further discussed in the next section.

The statements in the last paragraph are all true at zero temperature. At finite tem-
peratures, there are important differences in the macroscopic properties of the strong
coupling and weak coupling condensates. We learned in section 5.2 that at energies
less than U only spins exists if U is large. It is possible to find a phase transition from
the Néel state to the disordered spin state as function of temperature. Above this

155




transition, occurring at the Néel temperature Ty ~ J, there are still spins and the
difference is that their orientation is randomized. This is different in weak coupling.
The gap is now very small, (5.134), and if temperature becomes of order U(), the
spins themselves have to disappear. In addition, if the spins disappear, the gap has
to disappear as well! It turns out that this ‘gap disappearance’ transition occurs at
a lower temperature than the spin-orientation transition: the spins have disappeared
before they could loose their orientational order. This will be further discussed in the
context of superconductivity, where it is of particular empirical relevance.

I already stressed that nesting is a necessary requirement to find condensation in
the weak coupling limit. Nesting is special to one dimensional physics while it was
already explained in section 3.2 to be exceptional in higher dimensions. With the
exceptions of Fermi-liquids, superconductors, and bose superfluids, it is never possible
to find a ‘true’ weak coupling condensate in higher dimensions, and one has always
to exceed a critical coupling strength. This can be illustrated in the context of the
Hubbard model on a square (d = 2) lattice - recall that the model with nearest
neighbour hoppings showed an accidental nesting property (excercise 3.19). A and
B sublattices are implied and the mean-field Hamiltonian for the two dimensional
problem becomes,

H = Y[t > (ck, cgp, +hc)
E o

+U (A — Q)(CL”ATCEAT + CL”BlCEBL) +U(m+ Q)(CIZAlcEAl + CITZBTCEBT)]

+NU($* — %) (5.136)

with the dispersion relation,

w¥ (R, Q) = Un + /U2 + 4127 (5.137)

and the saddle-point equation for {2 is,

1 1 1

— = — 5.138
2N %: \/UZQZ _1_4152,?% U ( )

while 272 = 1. The only difference with the one dimensional problem are the two
dimensional integrals and a different dispersion relation,

kx 1 T
L kJ) + cos(%) (5.139)

Yz = cos(

with kg, k,e{—m, 7} in the folded Brillioun zone The U = 0 bandstructure is indicated
in figure 5.8 with the dashed lines (recall excercise 3.19),

For finite USQ, a gap appears along the boundary of the new Brillioun zone, as indi-
cated with the dashed line in the figure. It is directly clear that the gap opens up
everywhere at the Fermi-surface at the moment UQ becomes finite. This Hubbard
model is nested in two dimensions, at half filling! It is straightforward to show that
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I X M I

Figure 5.8: Band structure of the mean-field Hubbard model on a square lattice, in
the absence- (dashed lines) and presence (full lines) of the staggered order parameter.
Notice that everywhere at the Fermi surface (X — M, etcetera) a gap opens up for a
finite USY, because the fermi-surface coincidizes with the new Brillioun zone boundary
(see also inset). This is a pathology of this model.

this causes the same singularity as was found in d = 1?. We again focus on the
states close to Ep, observing that the band at Ef is flat in the direction parallel to
the Fermi-surface. Consider the side of the Fermi surface between (7, —m) and (7, )
- the other pieces of the Fermi-surface are equivalent. The Fermi-velocity is finite in
the perpendicular direction, and we linearize this problem in the same way as we did
in the d = 1 example. Take an arbitrary ky,e{—m, 7}, and define k; = 7 + k. For
U = 0 and small &7,

ke k
wr = —4t|cos - cos Ey (5.140)
~ vp(ky)k, (5.141)
with
Ky
vp(ky) = —4|t| cos o (5.142)

20This singularity is the infinity produced by integrals like (refcol24) or (5.138) if @ = 0. This
infinity implies a finite 2 for every finite U. This singularity shows up as well in the perturbation
theory around the Fermi-liquid state - another example of perturbation theory revealing flaws in the
vacuum state. An example is the Cooper instability which played an important role in the discovery
of the BCS theory.
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The k, dependence of vr is in first instance unimportant, and we can average the
Fermi velocity along the k, direction: vp(k,) — 9 (similar as to the average sound
velocity in the Debye model). This works the same for the other three sides of the
Fermi-surface, and we find (N = N,N,),

1 1 1

U ~ 2NN, zk: VUV + 48252
1 1
2NaNy (7%, JU2Q2 + 0% (K, )?
1 1
_ (5.143)
2N: g U2 + (k)

12

Precisely the same equation is obtained as in one dimension, except for unimportant
corrections related to the averaging of the Fermi velocity.

The square Fermi-surface of the single band, nearest-neighbour hopping model is
an artefact. At the moment one adds anything else (like a next-nearest-neighbour
hopping) the Fermi surface will start to look more spherical. In these more realistic
cases, the Fermi surface will only coincidize with points on the Brillouin zone bound-
ary. Since we only found a logarithmic singularity in the nested case, the integrals
will be finite for 2 = 0 and the condensation will not occur for sufficiently small U.
One needs a finite value of U to find spin-ordering. For instance, a finite ¢’ in the
present example (excercise 3.16) will cause a ‘warp’ in the band along the Brillioun
zone boundary (X — M direction) and U has to exceed this warp in order for the
SDW instability to occur.

The central message is that weak-coupling antiferromagnets (or charge density waves)
are special to the one dimensional world. This is a strong theoretical prediction which
is confirmed by a large body of experimental evidence. One dimensional physics is
littered with these collective density waves. Because of the arguments of section
4.6 and 5.3, the long wavelength quantum fluctuations will eventually destroy the
classical order in one dimension. This is also what happens, but the resulting quantum
fluids are best understood as floating solids (section 4.6) build from these density
wave states. In the higher dimensional world, weak-coupling magnets nearly never
occur: the only known examples are the so-called Bechgaard salts. Although these
are nominally two dimensional, they are very anisotropic and not far from the one
dimensional limit?!.

5.6 Fluctuations in weak coupling.

In the previous section, it was demonstrated that the Néel condensate could be studied
with remarkable ease, by starting directly with the electronic Hamiltonian, combining

2L0One encounters in these systems the so-called field induced spin density waves. Magnetic fields
increase the anisotropy further and it turns out that spin density waves appear in these Bechgaard
salts in external magnetic fields of some Teslas.
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the projective renormalization and the construction of the condensate in one step.
The crucial operation was the neglect of the fluctuation terms ~ 6§26, and 1 stated
that these relate to harmless order parameter fluctuations (magnons). One would like
to see this explicitely. Electrons are far more complicated than spins and the luck
on the mean-field level ends at the moment one tries to calculate the fluctuations.
Although the principles are straightforward, the calculation of the fluctuations around
the electronic mean-field state is a tedious affair. One really profits from the efficient
organization of perturbation theory in the field-theoretic formalism (diagrams) and
in chapter VII I will present an example of a full calculation of this sort. To give
some confidence already at this point, I will present in this section a rather special
case where one can get at the answer, in finite time, without invoking the Green’s
functions: the spin waves around the electronic mean-field state in strong coupling.
What follows is an example of a so-called ‘Random Phase Approximation’ (RPA)
calculation.

The principle is straightforward: do a calculation of the type (5.55-5.62), now using
the electronic vacuum amplitudes 7, 2 and the electronic fluctuations ~ 6Q,. This
becomes relatively simple in strong coupling: as I discussed, it is possible to build up
the Néel state in terms of real space wavepackets. Since the spin fluctuations involve
small energies, also the fluctuation theory can be constructed in real space. Since
these wave packets are tightly localized, we have only to consider two neighbouring
sites (A, B). Next to the occupied wavefunctions (5.131), we now also need the
unoccupied high energy states,

t

Thi = Clcy — ) (5.144)
W’iu = 0(021‘*‘%0}5}1) (5.145)
v = C(CEW%CLT) (5.146)
’Ygl =i 0(021_5021) (5.147)

with the normalisation factor C = (1 + (¢/U)?)*/2.

We want to rediscover the magnons in the full electronic problem. The obvious idea
would be to investigate the equations of motion of the spin-flip operator S*. We might

as well consider the non-local spin-flip, C}TC; V) and for the Hubbard Hamiltonian
(5-2),
. ol , .
ek ey, H) = tz chiczrg, — i) + U(=machos + cheng) (5.148)

= HExcercise 5.28

It is not at all obvious what this expression has to do with the spin-only result (5.56).
This actually makes sense - the bare electrons ~ ¢! no longer exist at low energies
in the insulator, and we ae looking at the wrong objects. Instead, we should focus
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on the localized electron states (5.144-5.147) and we should investigate the spin-flip
operators which can be constructed from the states '

Si = Y (5.149)
St = vhm (5.150)

and these will turn out to be equivalent to the localized electron spin-flips of section
5.3. One should first calculate the equation of motion (compare 5.55),

wit 1 4
Sns = (840 H] (5.151)

with the electronic Hamiltonian, and subsequently we should replace the operators
by their vacuum amplitudes, to obtain the classical modes. Although the principle is
straightforward, the calculation is already becoming tedious. It is convenient to first
transform the Hamiltonian by the inverse of (5.144-5.147),

1
CLT = C(’)’LT‘FE’YLT)

t

CTBT = C(’Y};T_E’YLT)
¢
C]:u . C(VLL—E’)’LQ
2
ch = Clrby+57h) (5.152)

The normalization factor C? = 1 up to order /U and the Hamiltonian looks as
follows up to second order (J = 2t*/U),
3

1
0 =UOy +1t0, + JO; + O(

) (5.153)

with

Ov = Yhvarvhivar + vhyve1vb,va, (5.154)
O = (’YI\T’YBT + ’YI;T’)’AT)(l + ’YIu’YAl - ’YEL’YBL)

+(Vhy vy + Y ra) (U= Vivar + vhrysr) (5.155)
05 = —Yhyvar — vh 81 + Yy varvhy v +
Yuvar +vhver + vhivevra +
Vi vk ver + v vsivh var +
’YLT’YBL’YLL’YBT + ’YLT’YAL’YL{YAT (5.156)

At first sight, this does not look at all like a Heisenberg Hamiltonian. One should
realize, however, that the transformation only makes sense in the presence of the
vacuum amplitudes yATfyAT — (fyATfyAT) =1 and 'YBL'YBl — <’YBl’YBl> = 1, while
’YAﬂAl — 0 ’)’BT"YBT — 0. Substituting these averages in (5.154) and (5.155), the
terms Oy and O, vanish - they are ‘eaten’ by the classical ground state. Only the
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last two lines of (5.156) survive, and these represent spin-flip terms ~ StSg: this
demonstrates that the fluctuation terms 8§246€2p, neglected on the mean-field level,
do correspond with the operators describing the kinetic energy of the spins.

Using the representation (5.153) of the Hamiltonian to calculate the equation of
motion (5.151) for the spin flips,

ot

. B A, . B | as
= t(yhyye (1~ R+ - t58) - Yorva(fia — - T58) +
3
2J((1+ SE)SE + SES%) + O(m) (5.157)
using

iap = Y YABt +Vhs Y48l (5.158)
Az 1
Sap = 5(7L,BT'7A,BT - ’YL,BﬂA,Bl) (5.159)

= BExcercise 5.29

This result is still exact for large U/¢t. In order to find the classical order parameter
fluctuation, we have to insert the vacuum amplitudes iy = (f14) = 1, ip = (p) = 1,
S% =(S%) =1/2 and S = (S%) = —1/2. We obtain the classical equation of motion,

Tt N s
iS, = J(ST + 3%) (5.160)

This has to be repeated for every pair of neighbouring spins, and the complete classical
equation of motion is,

(5.161)

Nl = =
§

identical with the result following from the Heisenberg model, (5.57)!

The above derivation has been taylored to deal with the low lying spin excitations.
Much more can be done with RPA. For instance, one can also calculate the longitu-
dinal spin fluctuation (fluctuation of the local moment S’f) or the charge fluctuation
(fluctuation of 7). These modes live at large energies ~ U and it is no longer pos-
sible to use a real space basis. At these energies, the electrons become delocalized
and one has to pursue the calculations in momentum space, and it is much harder to
calculate in k space (see chapter VII). The same problem is encountered even for the
Goldstone modes in the weak coupling limit. However, as long as the gap is present,
one recovers the same spin waves, etcetera, as in strong coupling at length scales
larger than the coherence length, and energies smaller than the gap. These modes
are quantized as usual, and the fluctuation behavior does not change qualitatively
in going from strong- to weak coupling. There is, however, a quantitative difference:
the order parameter fluctuations grow weaker for decreasing coupling! This might
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sound counterintuitive: the electrons themselves are more strongly delocalized and
one might have anticipated more orderparameter kinetic energy as well. However, we
saw in the previous section that the order parameter is composed of large numbers
of overlapping electrons at scales less than the coherence length, and this acts in a
similar way as long range interactions. Recall the Lieb-Mattis model of section 5.3,
where we found that spatial non-locality surpresses fluctuations. The bottomline is
that one should start to integrate at the ultraviolet momentum cut-off 7 /¢, instead
of m/a in fluctuation integrals like (5.85), which leads to a large reduction of the
magnitude of the order parameter fluctuation.

5.7
5.1

5.2

5.3

5.4
5.5

5.6

Excercises

Assume that in (5.3) and (5.4) all sites, except the sites 7 — 1,4 and 7 + 1, are
occupied in the same way. Using the fermion operators, show that ([|H|l') = —¢
and (I'|H|I') — (l|H|l) = U, where H is the Hubbard Hamiltonian (5.2).

a. Diagonalize the Hubbard hydrogen molecule (5.5) for two electrons.

(i) Write the Hamiltonian in the configuration space basis: | T|1 02),|01 Tl2
>,’ T1 l2) and | T2 11)-
(ii) Show that |T; N = 2) = (1/v2)(| T1 l2) — | T2l1)) and |U; N = 2) =
(1/v/2)(] T11 02) = |01 Tl2)) are eigenstates of H.
(iii) Because of (ii), only two states are left. Diagonalize this problem, to derive

the ground state energy and wavefunction in the large U limit, up to order
t/U (compare: (5.10)).

As was discussed in section 5.1, one finds quite often coexisting strongly-
interacting and weakly interacting electrons. The toy model

H = lesshs, +erflfo +V(fise +he)] + Ul £l (5.162)

gives some insights about the factors influencing the correlation effects. It
describes a f-like state (large U) and a s-like state which are hybridized. Solve
this problem for two electrons, in the limits U << ¢t and U >> t. Discuss the
strength of the electron-electron correlations using as criteria the surpression of
double occupancy and the spin-like character of the low lying states, as function

of (e — €5)/t.
Verify that (5.12-5.16) is a precise decomposition of the Hubbard model (5.2).

Consider 2 electrons on a Hubbard triangle of three sites. Group the states in
Hubbard sectors and use in addition the conservation of the z-component of the
total spin. Solve the (intra-sector) problem for U/t — oco. How many states are
found in total for 10 electrons on 20 sites? What would be the dimensionality
of the lowest Hubbard sector in this case?

Show that (5.23) is solved by (5.24).
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a.
b.

5.7

5.8
9.9
5.10

5.11

5.12

By substituting (5.24) in (5.23).

Systematically: (i) write SO =3 S, Spn being the operator creating
or annihilating m doubly occupied sites for m > 0 or m < 0, respectively.
Show that [S,, V] = —mUS,,. (ii) It follows that 3=, mUS,, =T+ + T
argue that this implies (5.24).

Show that (5.27) reduces to (5.28): Prove that 1[SW, [S®) V] = [T+ —
T-, Tt — T, and (5.28) follows.

Derive (5.31) from (5.30).
Show that (5.32) reduces to (5.36). Why is ng, +ny = =17

Consider half-filling and create one additional hole (N, = N — 1). Show

that next to the Ty term, an additional term appears O(J), describing the

delocalization of the hole. Notice that in the standard ¢ — J model this |
term is neglected, for no good reason.

The following extension of the simple model of excercise 3.1,

H=2 Z k)l cg, +epflfe + 2V (leg, + he) |[+US fif{£1(5.163)

E

describes a single strongly interacting state, hybridizing (V') with a bath of
conduction electrons with dispersion E(E) This is the ‘Anderson impurity
model’ which is very important in the context of heavy fermion physics
(Anderson’s Nobel price work is actually based on this model). Assume
large U, and in addition that €; and Er are choosen such that < ny >=
1. Use the results of section (5.2) to show that the effective low energy
Hamiltonian becomes,

2V? 4 .
HNZZ ke oChe + 7 251+ Fip (5.164)
k!
where S%—E, e ctTck, |» etecetera. This latter model is the equally famous

Kondo model, describing a single impurity spin interacting with a Fermi-

liquid.

Derive the following properties of the S = 1/2 spin-coherent states (5.42):
a. They are not orthogonal. Show that

Ao 1/2
7o R 1+ -
QI = (%) eV (5.165)
where _
B ¢ — ¢ cos[5(0+0)]
Y = arctan [tan( 5 )cos[%(ﬂ — )] (5.166)
b. Show that the identity operator
A 1 Al A
i=— / .
= ] d0sindde|0) (€] (5.167)
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0.13
5.14

5.15
5.16
5.17

5.18

5.19

c. Show that the spin operators are given by

—_

§ = 43 / d6sinddgQ ) () (5.168)
s
Repeat (5.41-5.46) for S = 1, using the results of excercise 2.35.

Consider a Heisenberg system with nearest-neighbour antiferromagnetic
couplings on a triangular lattice (excercise 3.17). Consider only Ising con-
figurations (spins oriented along the z-axis), and derive the classical ground
state.

Verity (5.50-5.53).
Verify (5.55-5.62). Repeat this calculation for the ferromagnet.

The Holstein-Primakoff transformation. The unusual aspect of this trans-
formation is the occurrence of the square roots in (5.66,5.67). These can
only be defined in the projected Hilbert space. We use (7 is the occupation
number operator, f an arbitrary function),

f(@)n) = f(n)in) (5.169)
a. What would happen in the unprojected Hilbert space?
b. The square root can be expanded as

/1 = blb:/(25) = o + arblb; + s (blb)? + - - (5.170)

Determine the coefficients in this expansion for S = 1/2 en S = 1.
What happens in the (classical) limit S — oco?

c. Show that (5.65-5.67) form a su(2) algebra for all S.

d. Express the Heisenberg Hamiltonian in terms of the Holstein-Primakoff
bosons for S = 1/2, including the boson interaction terms.

The Bogoliubov transformation for bosons.
a. Why are the hyperbolic functions used in (5.75-5.76), instead of the
usual cos uy/sinuy?
b. Verify (5.79-5.81).
In these mathematical proofs, inequalities play an important role. A simple
example is the inequality due to Anderson for the ground state energy (Ep)

of the antiferromagnetic Heisenberg model in d dimensions on a hypercubic
lattice:

1 E
_ 2(1 + —) < =2 « _Ngs? :
NdS*( +2dS)< 7 < ds (5.171)
This is proven as follows:
a. Show that the upper bound corresponds with the energy of the clas-
sical Néel state. Why is this energy an upper bound?

b. The lower bound is obtained as follows. The Heisenberg Hamiltonian
can be written as H = (1/2) Y; H; where H; describes a cluster of

spins, consisting of the spin at i, coupled to its 2d neighbours: H; =
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5.20

9.21
5.22

5.23

5.24

5.25

5.26

J S}. (E;Qfg)- Show that the ground state energy of H; is Ej =
—JS(2dS +1). If By > (N/2)E} the lower bound follows. Give the
reason why this is the case.

Notice that it follows directly from this inequality that the Néel state
becomes exact, both in the limits S — oo and d — oo.

The classical limit of the Lieb-Mattis model. Interpret the spins in (5.87)
as classical spins with magnitude S = 1.

a. Calculate the classical ground state energy. One already anticipates
that the classical Néel state should be a good bet!
b. Calculate the classical modes, using (5.55-5.62).

Verify (5.95-5.101).

Use (5.45) to show that (5.113) describes a system of IV, free classical spins
in the case that t = 0.

There is another (equivalent) way to derive the saddle point equations,
which is used in cases where the classical energy is not available in closed
form (e.g., numerical computations).

a. Show that according to (5.105,5.109,5.110) and (5.115)

1
Q = 52((011/1&/9/”)—<CITcA¢CkAl)>
k

_ 1
n o= 3 > ((CLATCkAﬂ + (CITcAlckAl>)
k

b. Use the inverse of (5.116-5.119) to express {2, 7 in terms of ¢.

c. ¢y is itself a function of , n. Derive this function and show that
this yields, together with (a.), the saddle point equations (5.125) and
(56.127).

Consider the ferromagnet in mean field theory (2 the same everywhere).

Derive the saddle point equations and show that one recovers in the large
U limit the energy of the ferromagnet state as calculated from (5.36).

The classical ground state for large U.
a. Use (5.132) to calculate (5.129), following the prescription of section
1.2.
b. Determine the ground state wave function of the ferromagnet for large
U/t, and calculate its energy, again using section 1.2.

The mean-field procedure is not restricted to electronic problems. It works
equally well in the context of electron-phonon problems, where it even be-
comes more straightforward to interpret. Consider the SSH model (excer-
cise 4.17). We consider a d = 1 chain, and neglect the kinetic energy of
the ions,

K
H = Y t(1 + auig)clycirse + 7Zu§5 (5.172)

ibo
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Use the fact that ;s is a classical quantity to show that for any « the chain
will dimerize: the bond-lengths stagger, in chemist’ notation -+ — . =
. — . =—---. This is the so-called ‘Peierls instability’. Hint: calculate the
energy of the dimerized state and minimize to the dimerization amplitude.
Linearize, to find an expression similar to (5.134).

5.27 In principle, it is also possible to find charge density waves in electronic
systems. This is associated with attractive interactions. Consider the
negative U problem,

H=t ; Cziacf+ﬁa — |U| Z nauny| (5.173)
0o 7
a. Consider half-filling and ¢ = 0. Demonstrate that the lowest Hubbard

sector consists entirely of configurations build from empty- and doubly
occupied sites.

b. Consider strong coupling (|t/U| << 1). Give the qualitative reason
why, on a bipartite lattice, the charge density tends to stagger: doubly
occupied sites on the A sublattice and empty sites on the B sublattice.

¢. Mean-field: consider a d = 1 chain.

i. Show that UTL;Tn; = (U/2)(n;n; — n;), with n; = Ny + 1y
ii. Write ny; = O; + 60;, with O; a scalar, and show that

1 1 1
H =t 35U S (0~ 5)ns = 508 +58080;) (5:174)
ibo i
iii. Neglect the fluctuations and impose a two sublattice structure
O;.4 > O;,g. Solve the mean-field problem and derive analytical
expressions for the charge order parameter Ocpw = O4 —Op and
the energy, both in the weak- and the strong coupling limits.

Notice that this variety of density wave is probably not realized in na-
ture: either the electron-phonon coupling interferes (excercise 5.26), or
superconductivity takes over (next chapter).

5.28 Verify (5.148)

5.29 Verify (5.153-5.156). Repeat (5.157-5.160), but now for S% - watch your
personal minus sign problem!
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6 Superconductivity: condensing the gauge.

Superconductivity and superfluidity (two manifestations of the same fundamental
phenomenon) play a special role in the sociology of physics. When superconductivity
is discovered in one or the other subfield, a flurry of activity follows instanteneously,
and in no time this subfield has acquired the status of frontier of science’. I find this
attention not quite justifyable.

I do not want to deny that superconductivity is a beautiful phenomenon, neither
that its explanation is a triumph of physics. Above all, the phenomenon escapes
from our daily intuition, build on the human senses. On the most superficial level,
the mystique is helped by the fact that superconductivity only occurs at inhumanly
low temperatures. Although large numbers of magnets and crystals persist at a
comfortable temperature of 300 K, the room temperature superconductor is still a
wishfull dream. Hence, we can only see the phenomenon through the window of
a cryostat or in the mid of an interesting mist caused by liquid nitrogen (familiar
from discotheques). This is the first reason to percieve superconductors as special
- nanokelvin intellects would percieve persistent currents and the Meissner effect as
unremarkable facts of life.

The next (more serious) confusion is found on the level of theoretical physics. For
a long time it was believed that superconductivity is really very different from mag-
nets or crystals. The latter would be ‘just’ classical physics, while superconduc-
tors are about wavefunctions, representing a singular opportunity to study quantum-
mechanics on the macroscopic level. This is nonsense. Superconductivity is as clas-
sical as tables and chairs, and it fits precisely in the recipy of section 1.2.

The true beauty of superconductivity lies in its use as demonstration material: the
power of abstraction, coming with the paradigm of section 1.2, becomes fully visible
dealing with a subject as weird as superconductivity. The mathematical theory of
superconductivity is actually quite close to that of magnetism. The difference is that
one now deals with electrons which attract each other. Again a projective renormal-
ization occurs, leading into a low energy Hilbert space which is now build from objects
different from spin: ‘Cooper pairs’. Interestingly, this Hilbert space has precisely the
same dimension as the Hilbert space of spins, and these Cooper pairs are also subject
to a su(2) algebra, which is explicitely broken to U(1) (on the classical level: O(2),
point on a circle) if the system is not electron-hole symmetric: attractive fermion
systems are like XY spin systems. The real novelty is that these XY spins turn out
to communicate with the vector potential of the electromagnetic field, and the local
gauge symmetry of the field is broken in the classical condensate. This aspect is the
key to the unusual physics of the superconducting state.

Having the lesson in mind of the previous chapter, we will first focus on the strong

L An embarrassing example is the early history of high T, superconductivity. The mere discovery
of a relatively high transition temperature (35 K, instead of the previous record of 28 K) caused a
mass movement which is unparallelled in the history of physics.
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coupling limit (section 6.1). The theory becomes quite easy in this limit and a clear
view will be obtained on the qualitative nature of superconductivity. This strong
coupling limit is never approached in nature. Electrons repell each other in the
physical vacuum, and to find attractions one needs at least virtual phonon exchange,
as will be explained in section 6.2. Section 6.3 deals with the weak coupling limit,
as described by the famous Bardeen-Cooper-Schrieffer (BCS) theory. Nature is quite
often in this limit and, for reasons which will be explained, this theory gives a highly
accurate, quantitative description of a large variety of measurable quantities.

6.1 The Zen of superconductivity.

In the previous chapter we learned that it is much easier to understand condensates
in the strong coupling limit, than in intermediate or weak coupling. We will follow in
this chapter the same strategy: first understand the phenomena in strong coupling to
subsequently continue the theory to weak coupling. In the context of superconduc-
tivity this is particularly helpfull. The problem is with the electro-magnetic ‘sector’
of the theory which is about gauge invariance. I will show that it is rather easy to
formulate a manifestly gauge invariant theory in strong coupling. To keep the theory
tractable in weak coupling, one is forced into gauge fixing, and this makes the theory
manifestly less beautiful, and somewhat unclear. Since strong coupling superconduc-
tivity is never realized in nature, we do not attempt to get any number right, and
the analysis which follows is as qualitative as possible, on purpose!

Superconductivity is caused by attractive fermion-fermion intractions. We again start
with a minimal model: the ‘negative U Hubbard model’,

H =Y aac;a%—(tf)*cgacﬂgg)—|U|Znﬁnﬂ (6.1)

This model is identical to the standard Hubbard model, except that the sign of U is
reversed. Notice also that we now insist on complex hopping parameters. This small
fact will turn out to be of enormous importance later on. What happens when |U]|
becomes large? We should again think in terms of the Hilbert space being split in
Hubbard sectors. There is one big difference with section 5.2: because the interactions
are attractive, the lowest lying Hubbard sector is now the one containing the mazimum
possible number of doubly occupied sites. With the thermodynamic potential we can
force an average number of electrons per site 0 < n, < 2 and these electrons have to
be distributed between empty and doubly occupied sites (figure 6.1).

There is in addition a ‘first excited” Hubbard sector at |U|, containing two singly
occupied sites, a sector at 2|U| containing 4 singly occupied sites, etcetera: it is the
top-down version of the Hilbert space of the repulsive problem (fig. 5.3).

At half filling, there are precisely as many doubly occupied- as empty sides and the
dimension of the ground state sector is 2"V: the Hilbert space has the same dimension
as the Hilbert space of a S = 1/2 problem! This hints at a spin-like character of
the physics at low energy. The crucial observation is, that the dynamics at energies
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Figure 6.1: Organization of Hilbert space for the negative U model. This is the ‘bottom
up’ version of the Hilbert space of the repulsive problem (figure 5.8).

<< |U| can be complete described in a set of operators, obeying a su(2) algebra. It is
easy to deduce this algebra. In the projected Hilbert space it is only allowed to create
a doubly occupied site from an empty site, or to annihilate the doubly occupied site
to end up with an empty site. Let us try the operators,

T = C%TCEH (6.2)

Ty = ey (6.3)
Commuting (6.2-6.3) yields,

[T, T7] = 2TF (6.4)

7 = %(”ZT‘*‘”ZL_U (6.5)

It is a mathematical fact that (6.2,6.3) and (6.5) form a su(2) algebra. Let me call
this the Cooper algebra, honoring the inventor of the two-fermion bound state.

= FExcercise 6.1

To derive the strong coupling Hamiltonian, we have again to apply the canonical
perturbation theory of section 5.2. Let me explain the principle, leaving the detailed
calculation as an excercise for the reader. We observe that virtual hoppings can only
occur between nearest-neighbour sites, if one of the sites is empty and the other
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Figure 6.2: Bxchange of doubly occupied- and empty sites, giving rise to the spin-flip
like terms in the Hamiltonian. Notice that the tunneling rate of the ‘right moving’
pair is the complex conjugate of that of the ‘left moving’ paur.

doubly occupied (figure 6.1). The first possibility is to empty the doubly occupied
site and to doubly occupy the empty site (figure 6.2).

Recalling the discussion in section 5.2, we directly recognize that these processes add
terms to the effective Hamiltonian ~ T3 T..J_T_q with a prefactor ~ ¢*/|U|. Compared to
superexchange, there is a subtle but very important difference. In the superexchange
process the electron jumped forth and back, ending up at the site where it started:
using complex hoppings J ~ tt*/U = |t|*/U and J is always a real quantity. In the
attractive case, both electrons move in the same direction and the J is therefore a
complex quantity if the ¢’s are complex - this small fact will turn out to be responsible
for the peculiarities of the superconducting state. Summarizing, the virtual hoppings
of figure 6.2 contribute to the effective Hamiltonian the term,

() _ 02, . ()2, _
H Z( 0 THT7 s+ 0 =t T Tj;é) (6.6)

It is also possible for the electron to hop back to the lattice site where it started (figure
6.3). These ‘stay at home’ processes are equivalent to the non-spin reversing processes
in the repulsive model, and they turn out to give rise to the same contribution as in
the spin case (compare 5.36), but now in terms of the Cooper z-axis operators (6.5),

(2‘1) . L 1
eff 2 Z |U| (T“ 6 Z) (6.7)
Together with (6.6), this implies that at half-filling the attractive fermion system is

precisely described in terms of a Heisenberg Hamiltonian, with the only difference
that the physical meaning of the su(2) algebra is now different.

A crucial difference with the repulsive problem is that the spin-like nature of the low
energy sector is not restricted to the special, charge commensurate electron density.
Regardless the filling, the low energy sector will always contain only doubly occupied-
and empty sites and the ‘fermionic’ singly occupied sites are always projected out.
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Figure 6.3: Virtual fluctuations where the pair returns to the site where it started.
These processes give rise to the Ising terms in the effective spin Hamiltonian.

Hence, the system is completely described in terms of the su(2) algebra at all fillings.
In section 6.3 we will find that this is also true in the weak coupling limit: the at-
tractive problem turns out to be automatically nested, and superconductivity occurs
for every finite attractive interaction. The filling of the system has nevertheless a
fundamental influence. Away from half-filling one looses the su(2) global symmetry
which characterizes the Hamiltonian (6.6-6.7): the ‘spin’ z-axis becomes inequiva-
lent from the zy plane. This can be seen directly. The T operator (6.5) measures
the clectron density: the m; = —1/2 state corresponds with an empty site and the
m, = 1/2 state with a doubly occupied state. When the average electron density
ne # 1 there are either more empty- (n. < 1) or more doubly occupied sites (ne > 1).
Accordingly, there is always a net ‘magnetization’ due to the external influence of the
thermodynamic potential. Using the definition of T%, it is immediately seen that the
Hamiltonian also contains the term,

1
HO:—(|UI+2M)Z<T5+§> (6.8)
The energy of an empty site (my = —1/2) is zero, while a doubly occupied site costs
—|U| — 2u. The thermodynamic potential () acts as an effective external magnetic
field pointing along the z-axis, which only vanishes when p = —|U|/2, corresponding
with half-filling! This expresses the simple fact that away from half-filling there is no

electron-hole symmetry. What remains is the XY symmetry (U(1)) of (6.6) and this
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symmetry is spontaneously broken in the superconducting state®.
=—> Excercise 6.2

Let us now turn to the classical sector of the problem (6.6-6.8). We have learned
how to construct the classical limit of spin-problems in section 5.3. We again use the
S = 1/2 spin coherent state (5.42) and the wave function of the classical state now
becomes in terms of the fermion operators,

18%,({Q})) =TI (e_""bf/2 sin(6;/2) + €%/ cos(95/2)c%clll) |vac) (6.9)

The empty- and doubly occupied sites take the role of the up- and down fermions
of the real spin problem. The hopping is parameﬂtrized in terms of an absolute value
t which is uniform on the lattice and a phase wz‘f which depends on the bond under
consideration,

£ = e (6.10)

)

and the classical energy becomes, using (5.43) ( J = 2¢*/|U]),
HE, = (O ({0 H + Hify + Hop |0 ({2)))
1 J
= (U1 +2) X ((cos(8) + 1)) + 5 3 (cos(6) cos(tr )
i

4

?

+ sin(6;) sin(0;, 5) cos(2¢§ — st (15;)) (6.11)

=—> Excercise 6.3

How to interpret this expression? When the system is half-filled (4 = —|U|/2) the
external field vanishes and we could choose the spins to lie along the z-axis. Because
the interaction is ‘anti-ferromagnetic’ this would give rise to a staggering of the T
component. According to (6.5), this state corresponds with a charge density wave:
doubly occupied sites on the A sublattice and empty sites on the B sublattice. Going
away from half-filling (4 # |U|/2) the spins ‘flop’ to the xy-plane and the effective
magnetic field cants the spins uniformly in the (positive or negative) z-direction, just
as would be the case for a Heisenberg antiferromagnetic in a real magnetic field (figure
6.4). Although the z-component is fixed by the external field, it is still possible to
rotate the spins in the xy-plane: the O(3) symmetry is explicitely broken to O(2)
(point on a circle), corresponding with the free rotations in the xy-plane, parametrized
by the phase angle ¢7. This O(2) symmetry gets spontaneously broken. At energies
or temperatures much smaller than ||U| + 2u|, the ‘diagonal’ charge density (T%)

%[t is straightforward to show that non-local Coulomb interactions give rise to extra Ising-like
contributions to the Hamiltonian. The fundamental symmetry in the charge sector is therefore not
SU(2), but instead U(1). Notice that for this reason it is always possible to find a non-zero average
charge-density: the symmetry is explicitely broken in the density channel T because there are more
particles than holes in the universe. (6.1) at half-filling is exceptional: for instance, at half-filling the
charge density would become a purely fluctuating quantity! Notice that in the presence of longer
range interactions it is possible to stabilize either superconducting- or charge density wave order at
half-filling: see R. Micnas, J. Ranninger and S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990).
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does not fluctuate and 6; takes some uniform value. We find therefore the following
effective problem at low energies,

cl §
H({9)) = Tp(t, U 1) Y- cos (205 = dr.5+ 63) (6.12)
i
where the effects of the uninteresting z-axis interactions are stored in the density p -
we only need that this quantity is finite. It is directly seen that the classical energy
is minimized, taking

2! — (fr 5= &) =7, Vi,8 (6.13)

)

the symmetry in the phase channel is spontaneously broken and (6.13) is the definition
of the superconducting order parameter. To visualize this order, it i1s convenient to
assume that wg = 0 everywhere, and in this case the spin order is as indicated in
figure 6.4.

Figure 6.4: The superconducting order parameter on a square lattice in terms of the
‘Cooper’ spins for a gauge v = 0. The spins are uniformly canted out of the XY
plane and the z-component of the spin is a measure of the charge density, while the
ordering in the XY direction causes the superconductivity. Notice that the orientation
of the spin z azxis with regard to the square lattice us arbitrary.

Up to this point, the discussion of superconductivity appeared as a marginal extension
of the spin-ordering as discussed extensively in the previous chapter. Nevertheless,
the physical nature of the order (6.13) is completely different from magnetism. It
is seen that (6.13) also amounts to a condition on the phase of the hopping: 21/)?
has to be compensated by the difference of the intrinsic phases ¢;, s — ¢;. Now it
comes: the phase of the hopping 2¢§ 18 directly proportional to the vector potential of
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the electromagnetic field. The vector potential is usually gauge invariant, but (6.13)
breaks this gauge invariance!

Electromagnetism, as all fundamental bosonic fields, is characterized by a local sym-
metry: gauge invariance. In case of the electromagnetic field, this means that that
at every point in space a gradient of a function can be added to the vector potential,
leaving the physics the same,

A(F) — A7) + V f(7) (6.14)

With the advent of quantum-mechanics, the meaning of this symmetry became clear.
The interaction between charged matter and the electromagnetic field is expressed in
the minimal coupling form,

h2( +7’— (“>) +Hpot U = E¥ (615)

2m

It is easy to check that the transformation (6.14) can be precisely cancelled by ad-
justing the sign of the wave function,

—,

H(A) — H(A+Vf)
P — D@0 (6.16)
o) = I (6.17)

so that before and after the transformation HV = EW.

= FExcercise 6.4

The gauge invariance of the field reflects the fact that it is not possible to determine
the absolute phase of the wavefunction, because only the probability amplitude |¥|?
relates to measurable quantities. This is true for all exact quantum-mechanical states,
including the exact eigenstates of (6.5-6.7). We learned in the previous chapters
that nevertheless non-exact ‘classical’ states are realized in the thermodynamic limit,
which violate quantum-mechanical symmetry requirements. The specialty of the
superconducting condensate (6.13) is that it breaks the fundamental gauge symmetry
(6.14,6.16,6.17)!

To see how this works in the present strong coupling limit, we have first to find out how
the vector potential appears in the Hubbard model. The vector potential influences
the kinetic term in the Schrodiner equation (6.15), and we expect therefore that it
enters in the hopping term. A minimal form for the interaction between the lattice
fermions and the electromagnetic field is derived as follows (the ‘Peierls construction’):
we assume that we are dealing with well-localized tight-binding orbitals. In addition,
we assume that the orbitals do not change their shape (‘polarize’) in the presence
of the field. The shape of the electronic orbitals can only change by admixing other
orbitals and because these are at high energy, the polarization due to the (small) field
will be quite insignificant3. We choose the components A° of the vector potential A (7)

3Notice that these polarizations are responsible for the dielectric response of insulators.
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along the bond axis and because the electronic wave functions on the sites can only
acquire an overall phase, the hopping term transforms as

| oz ins (F(Rytad)= (B b (. . (6.18)

Go 1+do o it+do

under the gauge transformation (6.16-6.17). At the same time, because of (6.14),

Retad R+ad . 5 5
/__ dtA%(2) — / dtA°(t) + f(B: + ad) — f(R:) (6.19)
b R'y'

(6.18) and (6.19) imply that the hopping part of the Hamiltonian in the presence of
a vector potential becomes,

fi-tad
ik [T aad (e)
Hy = E |:e fiedRy C}UC;+8'U + h.c. (620)
o
This is the simplest gauge invariant lattice kinetic energy which can be imagined. We
now understand the meaning of the phase of the complex hopping (6.10),

ﬁ;—}-ag _
W= [ @A) = —adl (6.21)

:ﬁc_ R he

1/)? is proportional to the average of the vector potential A on the bond 70!

The implication of the orderparameter (6.13) becomes now clear,

_@(pf+§ e

Al =
t 2e a

(6.22)
Considering length scales much larger than the lattice constant a, (6.22) can be
written as (the factor m can be gauged away),

fic o

A7) = —- V() (6.23)

The condensate forces the vectorpotential to take the form of the gradient of a func-
tion, while the function itself is still arbitrary! The magnetic field corresponds with
the rotation of A and the gradient of a function is rotation free,

B=VxA~VxVp=0 (6.24)

A magnetic field cannot exist in the superconducting condensate ! This is the Meissner
effect. The magnetic field expulsion is a manifestation of the classical rigidity of the
superconducting state.

From its name it is already clear that a superconductor carries electric current. Usu-
ally, we associate conducting behaviour with fluids. In a deep sense, the supercon-
ductor is not a fluid. It is a special solid. The specialty of the (super)current in
a superconductor is that it persists: it never stops flowing after it is set into mo-
tion. This is another manifestation of the rigidity of the superconducting state. The
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Goldstone mode of the superconducting state carries current, and because Goldstone
modes do not decay in a finite time (section 4.4), the supercurrent flows forever!

The current operator is the time derivative of the total polarization. The polarization
operator (ﬁtot) can be written as the sum of the products of the position vectors and
the local charge densities. In the projected Hilbert space, the local charge densities
can be expressed in terms of the operators measuring double occupancy,

1
Ptot - Z R“ T* 5) (6-25)

3

and the current operator is given by,

— 7:6 —

Jtot = T [H, Ptot] (6.26)
P,,; commutes with (6.7) and (6.8), and

Jor = -+ [Hef £+ Puot) (6.27)

2i i
= -2 Z Frg— BT T — e T T ) (6.28)

The total current is a macroscopic quantity and it therefore make sense to define the
classical current as the expectation value of the current operator in the classical state
(6.9) (fixing 6),

T = ({9 by }Iftotl{9 7 }) (6.29)

2ea

— —JPZ ) sin ( - AJ (bre5 — ¢{)) (6.30)

= KExcercise 6.5

(6.30) is quite interesting. It states that the current is proportional to the sinus of
the quantity

2ea

X; = A = (15— 40 (6.31)

summed over all bonds. On the other hand, the energy goes like the cosine of x
and we found x§ =, ‘v’f, 5 (6.13) in the ground state. Hence, there is no current
flowing in the ground state of the superconductor. Recall that in the superconducting
condensate a continuous symmetry (O(2)) is broken. Because this is a non-exact
symmetry breaking, there has to be a Goldstone mode present with a dispersion
relation w, = c¢g and a diminishing decay rate in the long wavelength limit. Let
us imagine that in some past time, Goldstone modes would have been excited at
¢ and —¢ such that a standing Goldstone mode is frozen in in the superconductor.
This standing wave corresponds with a slow, spatial precession of the XY arrows on
the O(2) circles. To visualize this, fix the gauge by A = 7hc/(2ea) and a standing
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Figure 6.5: The ‘spin configuration’ corresponding with a supercurrent flowing in the
q direction, firing the gauge at A = whe/(2ea) (eraggurated).

Goldstone mode in the z direction in the lattice would appear as indicated in figure
6.5.

We observe that the differences between the relative orientations of spins on neigh-
bouring sites is constant in space, and this is also true if we ‘free’ the gauge,

Xt = 7+ (0x5)
— 1+ (Oxm) (6.32)
For large wavelength, §xqas becomes small and we can expand (6.12) and (6.30) as,
EY — S+ Tp 3 (Gxba)? (6.33)
§
AN *
JE = == p(0x) (6.34)

the potential energy increases quadratically with the displacement Jx and this implies
that w, = cq. The surprise is in (6.34): in the presence of the Goldstone mode, a
current flows which increases when the wavelength of the Goldstone mode decreases!

Finally, how to put the supercurrent into motion? We already found that the mag-
netic field communicates with the rigidity of the superconducting state: it is the
equivalent of a hammer exciting phonons in a crystal! We saw that in the bulk of the
superconductor the vector field A should be rotation free. What happens near the
surface of a superconductor? According to the Maxwell equations, it is not possible
for the magnetic field to vanish suddenly. On the other hand, one needs electric cur-
rents to screen the magnetic field and in the superconductor this is the supercurrent.
For a time independent field,
4ar sou

V x B = (6.35)

c
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In general,
V x (V x B)=-V*B (6.36)

On the left hand side of (6.36) we find the rotation of the supercurrent. The super-
current on its turn is proportional to (6)) which contains the variation of the gradient
of the intrinsic phase ﬁqﬁ and the variation of A itself. Because the rotation of the
gradient of ¢ vanishes, the rotation of the superconductor has to be caused by the
rotation of the vector potential itself,

V x JO ~ ¥V x (64— 6V$) =V x (84) = B (6.37)
Combining (6.36) and (6.37),

VEE = B (6.38)

This implies that the magnetic field decays exponentially in the superconductor as
B = Bye/*L with a characteristic length scale Aj, (in this case, A, = A®c?/(32me%a®Jp)
in Gaussian units) which is called the ”London penetration depth”.

The above is all what can be said about the fundamental nature of the supercon-
ducting state. In fact, the above description is far superior to the standard treatment
one finds in older books. The reason is that superconductivity is, for good reasons,
realized in nature near to its weak coupling limit. We learned already in the previous
chapter that the technical complications one faces in this limit tend to obscure a
clear view on the physics. This is especially true in the case of superconductivity.
The reason is that the vector potential is an integral part of the order parameter
(6.13). Also in the condensate there is still a remnant of the gauge freedom, and this
is visible in the above (‘manifest gauge invariant’) treatment. The meaning of gauge
invariance is that A at some particular position in space can be changed from a small
number to a large number at will, without changing the physics. This is still true
in the superconducting state: A can be still changed from very small to very large,
but in the condensate this transformation is constrained by the requirement that this
change has to correspond with the gradient of the phase field ¢. Recall the ambiguity
in drawing the arrows in figures 6.4 and 6.6: for an arbitrary allowed gauge, these
arrows would have pointed in many different directions and in order to draw a picture
we had to fix the gauge A = 0 or whe/(2ea).

The problem in weak coupling is that it is very hard to formulate the theory in a
gauge invariant way. Regauging the vector-potential appears in weak coupling as
if one switches on very strong interactions. For instance, starting with A =0on
a particular bond, a genuine gauge transformation might change the phase of the
hopping into 7, thereby changing the sign of the hopping on this bond. At the end
of the calculation this will not make a difference, but halfway the calculation one
has to keep track of these phases and this is not easy. Instead, one chooses some
particular gauge at the beginning of the calculation (gauge ﬁXlng) For instance, in
the standard weak coupling theory (section 6.3) one picks A= (b = 0, and in the
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linear response theory for measurable quantities one considers the vector potential as
a small perturbation. This obscures the physics, and one is much better off in strong
coupling: at large length scales, physics is invariant under coupling strength.

6.2 Attractive electron-electron interactions.

At the moment that attractive interactions are present in a fermion system, super-
conductivity becomes a nearly unavoidable fate. The undistinguishable fermions,
relevant to condensed matter physics, have here a problem: they are subject to the
electromagnetic interactions and these fermions repell each other because they carry
equal charges. This is different in nuclear matter. The strong force is attractive and
on short length scales it dominates over electromagnetic forces. As a consequence,
superconducting correlations are common in nuclear matter. The most spectacular
examples are neutron stars: they are believed to be balls of superfluid of truely cosmic
dimension.

At low energies, the only fermions which are not locked in a crystalline state are
the electron and >He, both characterized by repulsive bare interactions. The effec-
tive attractive interactions, giving rise to superconductivity /superfluidity in electron
systems and 3He, have to be therefore of a collective, ‘emergent’ nature, involving
many particle physics. It follows immediately that the characteristic energy scales of
these interactions have to be rather small. This is the reason that the phenomenon

of superconductivity is only found at rather low temperatures*.

The vast majority of superconductors are of the ‘conventional’ kind, where convential
means (as usual) ‘well understood’. The source of the attraction in these supercon-
ductors is the virtual exchange of phonons between the electrons. In chapter IV, we
already found that the non-adiabatic corrections in the electron-lattice problem gave
rise to the electron-phonon interaction, which looked quite similar to the minimal
coupling between photons and charged particles underlying the electromagnetic in-
teractions. As will be shown in detail in this section, there is an important difference
between electromagnetism and the electron-phonon problem: the virtual exchange
of phonons between low energy electrons gives rise to attractive interactions between
the electrons. Next to this ‘phonon-mediated’ superconductivity, there is a class
of superconductors/superfluids which is called unconventional. These include *He,
heavy-fermion-, and organic superconductors and, last but not least, the oxide high
T. superconductors. All they have in common is that the mechanism leading to su-
perconductivity is not quite understood. It is believed that in 3He- and the heavy
fermion systems, spin excitations play the role of the phonons of the conventional
superconductors. The problem here is mainly of a technical nature: the theory of

4In addition, superfluidity also occurs in the boson system “He. This is on the fundamental
level the same as the fermionic superfluidity discussed up to now: the Cooper pair is like one boson
with a hard-core interaction. Unfortunately, due to the persistent misunderstanding that Boson-
superfluidity has something to do with Bose-Einstein condensation (which is not the case), the
standard microscopic theory of * He is severely flawed. At present, this theory is under reconstruction
by the author.

179



spin-fluctuation mediated superconductivity /superfluidity is much harder to control
than the phonon version. In the organics and especially the high T, superconductors
the situation is much worse. The metallic reference state found at temperatures above
the superconducting transition temperature seems unrelated to the Fermi-liquid state.
In chapter VII it will be explained that the existence of a Fermi-liquid ‘condensate’
is a necessary requirement for the existence of fermionic (electron-like) low energy
excitations. In the metallic state of the high T, superconductors and the organics
there are apparently no electrons! It is not at all clear what exists instead, let alone
that one can address the superconducting instability of this mysterious state.

Let us turn to the conventional superconductors. The theory of those is one of the
triumphs of conventional quantum condensed matter physics. The understanding
of the full (‘Eliashberg-Migdal-Gorkov’) theory requires the diagrams and Green’s
functions as introduced in chapter VII. However, the qualitative features of this theory
can be seen using less sophisticated means, as will be demonstrated in the remainder
of this section, and in the next section. This form of superconductivity occurs as an
instability of the Fermi-liquid state. This highly non-trivial state will be discussed in
more detail in the next chapter, and in the present context you only need to know
the rough features of this state:

1. Next to bosonic Goldstone modes (zero-sound, plasmons), the Fermi-liquid con-
densate also carries fermionic ‘modes’: the quasiparticles. In many regards,
these look like band structure electrons. They have a dispersion, while they are
counted as fermions, and they define a Fermi-energy and a Fermi-surface.

2. In contrast to the band-electrons, these quasiparticles are only well defined in
the low energy limit - in this respect, they are like Goldstone modes. In the
approach to the w — 0 limit, their mutual interactions become weaker and
weaker, to vanish when w = 0. Their energy is counted from the Fermi-energy:
w = Er —e; or w = —Ep + ¢ for quasiparticles or quasiholes, respectively.

3. In contrast to the quasiparticle-quasiparticle interactions, the electron-phonon
interaction is unrenormalized on the scale of the Einstein frequency. At energies
w ~ wg(<< Er) the electron-phonon is of the same order as for real electrons.
Going to lower energies, also the effective quasiparticle-phonon interactions
become weaker and weaker, and the lowest energy quasiparticles are decoupled
from the long-wavelength acoustic phonons.

The last statement applies to real phonons; it is still possible for the low energy
quasiparticle to interact with virtual phonons at w ~ wg, and this interaction is of
the order of the bare interaction. The following model describes the essence of the
problem,

Heff = Hy+ H; (639)
Hy = > (ez— N)CL~UCEC, + wr Y, bgb(; ) (6.40)
ko 7
H = MY ., (bs+0'5) (6.41)
kgo
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where ¢! now creates a quasiparticle at energy eg — i (p is the thermodynamic po-
tential, 4 = Fp at T = 0), while bL« creates a localized ‘Einstein’ phonon. This model
is quite similar to the Holstein model (4.83). Because the interest is in the phonons
at the Einstein frequency, their dispersion might as well be neglected. For the same
reason, the quasiparticle-phonon interaction H; can be taken to be local in space,
compare with Eq. (4.79).

We now focus on the lowest lying quasiparticle excitations with energy |ex—pu| << wg.
In direct analogy with the discussion in sections 5.2 and 6.1, we find that the Hilbert
space of the problem splits up in sectors, which are now labelled by the number of
excited phonons, instead of the number of doubly occupied sites. We span up the
Hilbert space with the direct product of the quasiparticle- and phonon Fock spaces,
to find a ground state sector characterized by zero-occupancy of the phonon state,
and any configuration in quasiparticle Fock space, as long as its excitation energy is
small compared to wg (figure 6.6). The first excited sector is characterized by one
excited phonon, and any allowed quasiparticle configuration, etcetera.

20 _FZZZZZ°%:

Figure 6.6: The organization of Hilbert space in the electron-phonon problem
(6.40,6.41). It splits up in sectors characterized by the occupancy of the Einstein
phonon and every sector consists of the Fermi-sea and its excitations, as for instance
a quasiparticle-quasihole pair, two excited quasiparticles and one quasthole, etcetera.

Notice that the only difference with the problem in section 5.2 (or 6.1) is in the fact
that the states described by Hj live in a different Hilbert space. The ground state
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of Hy is the Fermi sea (with energy Fy; = 0) and subsequently one can build up
configuration space by adding a quasiparticle or hole (at an energy cost |e, — ul),
creating a quasiparticle-quasihole pair (at |ex —e}]), a quasiparticle pair (at |ex +£}, —
241]), etcetera. For highly excited quasiparticle configurations, the sectors labelled
by phonon occupancy are overlapping, and it is no longer possible to construct a
strong coupling perturbation theory. However, if the interest is only in the lowest
lying states in the quasiparticle sector with energies << wg, we can directly use the
results of the strong coupling theory of section 5.2. The correspondence is as follows
(compare (5.12-5.16),

T — Dleg—mek e, > (6.42)

vV - wEZbgbq , (6.43)

TV — Mch+ YL P (6.44)
kqa

T~ — MZcE%chJ by - (6.45)
E(To

T+ and T~ now describe the processes involving the creation- and annihilation of a
phonon, respectively. The strong coupling expansion is in the present case controlled
by M /wg, assumed to be a small number. We can directly use the central result of
section 5.2. Up to second order in M /wg , the low energy states are described by
the effective Hamiltonian (see 5.30-5.31),

H}p = To+ Hi (6.46)

where T° describes the free quasiparticles (6.42) and (p, is the quasiparticle density
operator, see 4.80),

1
Hint = e —T_ T+
wE

_ T
= Z Z ck+qg Ica k/_|_‘7 Ulck’ a’b b )

Icqa k’cj"a’

- Z Z C)H_qg Ica k’+q o! k’ 0’5 ’

kqa Ic’(j"a

- Z Z Ck+q cho Ic’ Cfc",a’ (647)

kk'qg oo’

R, .o 5 = 6.48
o8 %:Pq/’ q ( )

where we used in the third line the fact that the phonon occupation number has
to be zero in the ground state sector. We directly infer from (6.47) or (6.48) that
the exchange of virtual (high energy) phonons gives rise to an effective interaction
between the quasiparticles. Moreover, these interactions are attractive (minus sign!).
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This sign is easy to understand. The fluctuations to the high energy states push
down the low energy states. In the spin- or Cooper pair problem, the system profits
from this energy lowering by aligning the spins in an anti-parallel fashion. In this
case, the energy is gained by the attractive interactions between the quasiparticles.

k' k’-q

k k +q

Figure 6.7: In diagrammatic language, the phonon mediated interaction is represented
by merging the phonon lines of two diagrams of the type shown in figure 4.4, to obtain
an interaction diagram of the type shown in section 2.4.

Let us anticipate on the presence of Cooper pairs, and rewrite the interaction term

accordingly. After two additional commutations, (6.47) might as well be written as®,

Huy = == 33 0 b o oo (6.49)

EE’{T oo’

Written in this way, the interaction term represents the process where a pair of
electrons is annihilated (at k and k’) while a new pair is created (at k+qand k' — q).
We have now to recall that theis interaction term applies only to the quasiparticle
configurations with an energy, less than the phonon frequency. The energies of the
excited pair state €ipg T Eh—g — €k — € < WE- This gives rise to an important
kinematic constraint on the allowed momenta as well: the center of mass momentum
of the pairs K = k + k' has to vanish if wgy << Ep. It is easy to see that it is
impossible to keep the energy of the pair state within the small shell ~ wg around

Ep for a finite center of mass momentum K. Because K = 0, k = —k' and (6.48)
simplifies further to
M? tot
H‘.".uf, = = w—FZ:ZCk, c i ol -k G'Cko' (650)
- kk! oa’

= Excercise 6.6

Anticipating further on the outcome, we learned in section 6.1 that attractive in-
teractions tend to stabilize Cooper pairs where the electrons have paired up their

5The anticommutators are only non-zero if the wave numbers of the particles are the same. These
contribute ~ 1/N and can be savely neglected in the thermodynamic limit.
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spins. We can therefore neglect in (6.49) the terms with parallel spins. Including
the kinetic energy of the quasiparticles, this leads to the so-called BCS (‘Bardeen-
Cooper-Schrieffer’) Hamiltonian, the starting point of the discussion of weak coupling
superconductivity,

!/
Hpes = Z(EE — 1) }%gc,;a — VZCE",TCT—EZLC—EJCEJ (6.51)

ko kk'
where V ~ 2M? /wg, while in the interaction term only quasiparticle states should be
taken into account for which |e;—ep| < wg and |eg,—¢ r| < wg: only the quasiparticles
with an energy less than wy are subject to attractive interactions. It is unclear from
the above derivation where exactly to place this ‘ultraviolet cut-off’. It turns out,
however, that the results are in at least in weak coupling rather unsensitive to this
choice. If this becomes an issue, as in the so-called ‘strong coupling’ superconductors
like Pb, with small wp and large M/wg, one has to consult the full diagrammatic

theory.

6.3 Superconductivity in weak coupling: the Bardeen-Cooper-
Schrieffer theory.

With the BCS Hamiltonian as a starting point, it becomes particularly easy to con-
struct the weak coupling theory. Initially, this follows the derivation of the spin-
density wave in chapter V closely. In analogy with (5.105) we conjecture the existence
of vacuum amplitudes,

<CIT3,TCT—E,1> = Ok (6.52)
(i) = Opi (6.53)

The difference with (5.105) is, that we are now considering an expectation value of a
quasiparticle-quasiparticle pair, instead of the quasiparticle-quasihole pair of chapter
5 - this we learned to appreciate in section 6.1. In addition, the vacuum expectation
values now appear in momentum space, instead of position space. We are forced to
do so because only a small fraction of all quasiparticles (which carry momentum as a
quantum number) can participate, because of the smallness of the phonon frequency.
At the same time, we got already used to momentum space condensation in section
5.5, and the outcome here will be very similar in these regards.

The pair operators are decomposed in a vacuum amplitude and a fluctuation,

A I .
CE,TC—E,l = OP,E + (SOP,E (654)
C_ i Cir = Op,E + 5Op,l_5 (6.55)
and the BCS Hamiltonian (6.51) can be written as
Hpes = Z(e,; — ,u)c}%gc,;a -V Z: (OPaECL_"TCT—I_c"i + O;,EC_ELCET
ko Kk
~02 0,7+ 080" 60, ) (6.56)

184



It is convenient to introduce,

AO == V Z Op,E
k

k

Later on we will learn to appreciate this as the quantity measuring the gap in the sin-
gle particle spectrum of the superconductor - it is equivalent to the term US2, showing
up in section 5.5 (e.g., figure 5.6). Neglecting the fluctuation term ~ 50; 00, ;in

(6.56) and using (6.57) yields the mean-field Hamiltonian,

. |B9[”
HBCS = P ((eE—u)( ek Gy —I—ct ckl) Aoc c — Age klckT) VO'| (6.58)

k

This has the same status as (5.114): we have first to integrate out the electrons,
to subsequently minimize the classical energy to obtain the orderparameter Ay/V.
From (6.58) it follows that the first step involves a diagonalization of the Bogoliubov
type, as discussed in section 2.4.

Before we proceed with the calculation, let us first seek for further simplifications.
From (6.57) it is inferred that the orderparameter is a complex quantity. Writing
Ao/V = |Ap|/V exp(i¢g) it is easy to see from the strong coupling limit that ¢ corre-
sponds with the phase angles ¢ of the strong-coupling XY pseudo-spins. Although
spatial uniformity has been imposed, the order parameter as a whole still respects
the O(2) rotational invariance when the orderparameter is taken to be a complex
quantity.

= BExcercise 6.7

At the same time, we have implicitely assumed that A=0in (6.51) and we learned
in section 5.1 that the vector potential is an integral part of the order parameter. It
is difficult to construct a manifest gauge invariant weak coupling theory. Since we
should be convinced in the mean time that the symmetries of the problem cannot
get lost in the continuation from strong coupling to weak coupling, we might as well
simplify the weak coupling theory as much as we can: we fix ¢ = 0 such that the
order parameter becomes real Ay = A} = A. The mean-field Hamiltonian simplifies
further,

2

A
Hils = N ((e,; - ,u)( Cgp c‘: Ckl) A(CL“TCT—EL + C—EicET)) + A (6.59)

-

k

The Bogoliubov transformation, diagonalizing a ‘particle-particle’ problem like (6.59),
works differently from the usual ‘particle-hole’ diagonalizations. This causes a some-
what different appearance of the present mean-field theory, as compared to the one
discussed in chapter V. (6.59) amounts to a ‘two-level’ Bogoliubov problem for ev-
ery pair of k T, —k | electrons. Recalling the results in section 2.4, this problem is
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diagonalized by,
G = WY FURTh
¢ . =~V + UE 7;%1 : (6.60)
with the condition that
u% 4 v% ] (6.61)
The inverse of (6.60) is,

. = PN |
Yeo = YECk —UEC_g o

fyi = UECET+chJr_E

k (6.62)

i’

and the v'’s describe fermions,
{7507 ry};'.-gl} = 612,1;/50(7’ ) (O',O',:O, 1) i
{%zg, 715'0/} = {’Y,{'U, 7,%,0,} =0, (00=01) . (6.63)

Substituting (6.60) in the mean-field Hamiltonian (6.59) and ordering the operators
yields,

B = 3 [((eg — m)(ud — ) + 28uzvg) (Voo + 7 m0)

—

k
+ 2 ((5,; — p)vz — Au,;v,;)
+ (2(ez — wugog + AR —ud)) (vamg, + k)] + A72(6-64)
It follows that the Hamiltonian becomes diagonal in the v!’s if we impose the condi-
tion,
2ep — pwupvp + AQE—uf) = 0 . (6.65)
Multiplying (6.65) with A /u% we obtain,

(A“’5>2 +2(eg — 1) (éﬂ> —A =0 (6.66)

Ug Ug

with the solution,

Avz

—L = Ep-(—w) (6.67)
ug
By = J(gp—p)?+A2 (6.68)

Together with the normalization condition (6.61), we have two equations for the
unknowns ug, v, and it follows that,

1 - —
vg:1—u%=—<1—(€k—“)> ‘ (6.69)

2 Ey
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Substituting (6.69) yields the mean-field Hamiltonian in diagonal form,

A2
H = 3 (e—w-E)++r
i
+ 2 Bp(rky o + 1h0m) - (6.70)
k

= Excercise 6.8

Being used to particle-hole problems like (5.120), one could be tempted to fill up the
new fermion state 4" up to kp. In this regard, the Bogoliubov transformation works
quite differently. The normal (Fermi-liquid) state should be recovered by setting
A = 0in (6.70). Because we counted from the unperturbed Fermi sea, the ground
state energy should be in this case Fy(A = 0) = 0, and together with (6.62, 6.68) this
implies that in this case the v! describe quasiparticle/hole excitations on top of the
Fermi sea. For finite A, the first term in (6.70) becomes negative, indicating a lowering
of the electronic contribution to the vacuum energy, and apparently the v!’s describe
the fermionic ezcitations of the superconducting condensate. This observation can
be used to deduce the wavefunction, describing the classical state in weak coupling.
Because the «’s describe excitations,

r)/fc‘0|q)%l> S 0 ) vk 3

Tl®) = 0, Vk . (6.71)
Combining this with (6.62)

Ug CET|(I)OCZ> = Vg C1’_El|®%l> ’

Uk CL“TI(I’%Q =  TUug CT_,;J(I)%Q . (6.72)
It is easy to verify that the condensate wave function has to be

%) = II; (“E + UECJTZTCT—EL) lvac.) (6.73)

This is the famous BCS wavefunction. Notice that the product in (6.73) has to be
taken over all possible wavevectors, not only those satisfying k < kp.

= Excercise 6.9
— Hxcercise 6.10

(6.73) is nothing else than a straightforward k space generalization of the real space
condensate wave function encountered in section 6.1. For instance, if the kinematic
constraint on the wavevectors coming from wg/Er << 1 would be absent, and we
would make V large compared to the bandwidth, the u; and v;’s would become
k independent and transforming the fermions back to real space one would find
|PY,) = 1I: (u + UC}TC}J lvac.): (6.9) with ¢; = 0 and cos(0/2) = u.

Historically, (6.73) was the starting point of the development of the theory of super-
conductivity. In the original paper, (6.73) was presented as a variational wavefunction
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and in 1957 it was not realized that wavefunctions of the same general structure (sin-
gle determinant, non exact, implying rigidity) describe classical objects, including
crystals and antiferromagnets. The mere fact that (6.73) is a wavefunction has mis-
led generations of physicists to believe that superconductivity is about macroscopic
quantum-mechanics, while crystals and antiferromagnets are not. These misunder-
standings persist up to the present day - it is not hard to find eminent physicist
claiming that superconductivity is different because (6.73) is a wavefunction. The
remedy: teach them section 6.1 and chapter 5.

As in magnetism, the problem in weak coupling is to establish whether the con-
stituents of the order parameter (in this case the pairs) can exist. In strong coupling,
the pair amplitude sin?(/2) is finite at all energies < |U/|, while in weak-coupling it
is not a-priori clear if A will be finite under all circumstances. To determine A we
have to minimize the classical ground state energy,
A2
P = (- m-5) + 5 o7
k

Minimizing to A by E¢;/6A = 0 yields the saddle point equation (compare (5.123)-
(6.127))

gl 1 1
= = 6.75
2% Jleg—pwrrar VY e

Recall that the (primed) summation over wavenumbers has to be taken such that only
wavenumbers satisfying |e, — p| < wg are taken into account. Only one quasiparticle
energy appears in (6.75), and it is now directly possible to evaluate (6.75) in terms of
the quasiparticle density of states N(F). Taking into account the constraint on the
allowed quasiparticle energies as well, (6.75) can be written as,

Ve g NE)
2 Jowg  VEZH A2

where € = ¢ — p1. Let us now consider the weak coupling limit, V/W ~ VN(0) << 1
(N(0) is the density of states at Er). N(e) will barely vary on the scale of V' and
therefore,

1 = (6.76)

wg dé
1 ~ VN(@ —_— 6.77
O Jarm 670
= VN(O)arcsinh% (6.78)
Inverting this expression,
A = —wE—l ~ Qge /VNO) (6.79)
SIth’VN—(O)

This expression for the gap/orderparameter is in fact quite similar to what we found
in the context of spin density waves, Eq. (5.134): Regardless its smallness, every
attractive interaction will give rise to a finite superconducting orderparameter! As
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in the case of the spin density waves, the magnitude of the orderparameter becomes
very small for small VN(0). Comparing (6.79) and (5.134), they are also numerically
similar. 27t/U is equivalent to 1/V N(0). The difference is in the prefactors: the full
bandwidth in the case of spin density waves and only the phonon frequency in the case
of the superconductors. This is the reason that we were allowed to be rather sloppy
in our choice of wg as the upper energy bound for the attractive interactions: small
numerical errors in the factor V.N(0) in the exponent will outnumber imprecisions in
the choice of the cut-off energy.

The truely remarkable feature of (6.79) is that it holds regardless the electron density
or dimensionality. This is quite different from the ‘particle-hole’ instabilities, like the
spin density wave discussed in section 5.5. There we found nesting to be a necessary
condition for the instability to occur in the weak coupling limit, which limited the
phenomenon basically to one dimension. Nesting meant that the spatial structure of
the order parameter is such, that the new Brillouin zone boundary precisely spans
the Fermi-surface. Superconducting order, on the other hand, is characterized by an
‘automatic’ nesting: the pair amplitude A/V maps the Fermi-surface on itself (see
figure 6.8). The pair potentials A lead to an Umklapp, folding the hole states at
—E, —o onto the electron states at E, o. The fundamentals are most easily recognized
in strong coupling, where we found that the low energy Hilbert space of the attractive
problem is spin-like, regardless the particle density. This property cannot get lost in
the continuation to weak coupling.

= BExcercise 6.11
= Excercise 6.12

It was already announced that A actually relates to the gap in the single fermion
spectrum of the superconductors. This follows immediately from (6.70). We learned
that the y’s represent fermionic ezcitations of the superconductor. According to
(6.70) and (6.68), these excitations cost an energy of at least Ep_,- = |A]. To find
out the nature of these excitations, it is interesting to consider their effect on the
condensate wavefunction (6.73),

’Y,%O e > = (“EC;TZT - UEC—EL) (“E + “ECL“TCT—M) II (- )lvac)
k1K
- t
- C};;T 5 I, (UE1 + UEI CL-‘lT C_Ell) |Uac> 3 (6-80)
1k
10 > = gy T (ug +og oy ey ) loac) (6.81)
1k

It is seen from these expressions that the 4'’s break up a k space Cooper pair, to
leave behind an unpaired electron. In addition, it is easy to see that these final states
are hole like when k << kr and electron like when £ >> kp. Consider high energy
states such that |z — u| ~ lvpk| >> A. (6.69) simplifies to

V=1 ul %(1 - (5’3—_”‘2) (6.82)

g leg — 1l
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and it follows that for k << kp, vZ =1 and u% = 0, while for £ >> kp, vZ = 0 and

u% = 1. For states far below the Fermi-energy (|vpk| > wg), 71%0 ~ c_g, acting on a

component in the BCS wavefunction ~ CITZTCT—EL: 7%0 creates just a quasihole. In the
same way, the y’s create quasiparticles when k>> k_;r What happens when k& = kp?
uf o= v,%F = 1/2 and apparently the v!’s create ‘half an electron’ and ‘half a hole’.
This is not as mysterious as it sounds. Imagine an experiment where one measures
the probability to add- or remove an electron at a given energy or momentum. As will
be further explained in the next chapter, this experiment actually exist: (inverse)
photoemission. The result of such a measurement is indicated in figure 6.8. At
momenta k << kr (k >> kp) one finds the hole (electron) in the quasiparicle state
at —vrk (vpk). Approaching kp from below, one finds both below and above the
Fermi-energy a finite probability to annihilate- and create an electron at energies
+Fk;. The weight above Ep increases untill the probability distribution becomes
equal at both sides of Er at k = kg, while the weight above Er start to grow if & is
further increased.

Figure 6.8: The dispersion of the electron E,a (dashed line) and the hole at —E,&
(dotted line) are crossing each other at the Fermi-energy: the automatic nesting char-
acteristic for a superconductor. In the presence of a finite pair amplitude A/V these
states miz, and instead one finds the Bogoliubov dispersion E; (Eq. 6.68). The thick
line illustrates what is seen in the (inverse) photoemission experiment: the thickness
of the lines is proportional to the probability to either annihilate- or create an electron
in the system, as function of energy and momentum.

= Excercise 6.13

Next to these fermionic excitations one can also address the nature of the charge
and spin excitations, described in terms of pairs of fermion creation- and annihilation
operators. We already discussed the supercurrent in section 6.1, which is the most
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interesting property of the superconductor in the charge sector®. The spin sector

deserves some special attention as well. Although the condensate wavefunctions (6.9)
or (6.73) are not eigenstates of total spin, they are linear superpositions of the vacuum
and pairs of electrons in singlet states. One anticipates that, next to the Meissner
contributions, the spin response of the superconductor is also diamagnetic. This is
easy to see. Acting twice with 71%,0 on the condensate,

’Y]TC'O ’Y/%IO I(I)%l > = CL-‘T CIE"’T . H‘_. (UE” + UE” CITZ”T CT_EHJ’) "UCLC.) (k; # k,) (683)
kM k!

breaks up singlet pairs at E, K , to produce a state which is a triplet. When k= EF,
this is the lowest energy spin excitation one can make and this costs and energy 2A.
Hence, at energies less than 2A, spin has disappeared from the universe as defined

by the (‘singlet’) superconducting vacuum”.

Let us finally consider the temperature dependence of the order parameter and gap
in the weak coupling case. 2A is in conventional superconductors quite small, typ-
ically like 1 — 100 K in temperature units. If temperature becomes of order of the
gap one expects gross changes to occur. In principle one should work oneself through
the fluctuation theory, to address the influence of temperature, as we did in section
4.6. For very special reasons these fluctuations are utterly unimportant in the weak
coupling limit, and a complete account of the temperature dependences follows di-
rectly from the mean-field theory. How to take into account finite temperature on
the mean-field level? In taking the average of the diagonal mean field Hamiltonian
(6.70) to obtain the classical energy, we have to realize that the excited states (y!’s)
become populated if temperature is finite (F¢; is the mean-field free energy),

A2
FCl = Z((&?E—ILI/)—EE)'FV
k
+ 3 Byl vee) + (b ve)) (6.84)
k
because the ’s are genuine fermions,
<7/];'0,17EO,1> = nF(ﬁEIZ) (685)
where np is the Fermi-factor Eq. (2.53). Using
1 ePFr — 1 BE;
1—27’LF(ﬂEE) = 1_2(3‘6}35—]—1 = (jﬁEE—Fl = tanhT (686)
the saddle-point equation becomes,
1 K1 BE; 1
— ) — —=) = = 6.87
2NEE,;tanh( 7 ) =V (6.87)

In addition a plasmon is found at long wavelength, which is not different from the plasmon in
the normal state, which is discussed in chapter VII.

"For special forms of the attractive interaction (see excercise 6.13) it is possible to construct a
pair wave function which carries even angular momentum, while the spins in the pair are aligned in
a triplet state. This actually happens in 3He.
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similar to (6.75) except for the thermal factor tanh(ﬂ—;EE). This becomes in the con-
tinuum limit,
1 wr  tanh L1 BvVE2 + A2
== NO) [ Ve 1
14 0 VE:+ A?

(6.88)

— Bxcercise 6.14

The integral in (6.88) cannot be evaluated analytically. One expects, however, that
the population of the excited states will weaken the superconducting order, and even-
tually the order parameter should disappear. The temperature where this happens
(the transition temperature T,) can be derived analytically. T, is the temperature
where A — 0. This happens according to (6.88) when (8. = 1/kgT,)

1 _qwe  tanh(3Bx)  [e=Pewr 1
o = /0 dp——L0 = /x:o d(lnz) tanh () (6.89)
Bewi t h 1,
= In(fwE) tanh(ﬂcwE/Z)—/O dx lna:d—~aili;r—(-ﬁ : (6.90)

Because of the derivative of the tanh, the integrand can be neglected except for z < 1.
Because hiwg/kpT, > 1, the second term is independent of 7, and it turns out to be
In(1.13). The answer for T, is

Bl ~ 1.13wpe VOV (6.91)

Interestingly, in weak coupling the gap to T, ratio becomes a universal number,

2A(0)
_ 3 92
T = 5 (6.92)

and this relation is quite well obeyed in superconductors of this type.

T VNI A(0) = 1.76 kT,
A(0)

SN

Figure 6.9: The superconducting gap as function of temperature in weak coupling as
calculated from Eq. (6.88).

The integral in (6.88) can be evaluated numerically for arbitrary temperatures and
the result is shown in figure 6.9. At low temperatures, nearly nothing happens with
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A: in order to excite the pair breaking excitations one has to overcome the energy gap
2A and intitially the density of these excitations is exponentially small ~ exp(—£2A4).
Raising the temperature this density increases, and this decreases the gap magnitude,
such that the density increases further. T, signals the temperature where this feed
back process gets out of control, with the result that the order parameter disappears
alltogether. Close to the transition A(T)/A(0) ~ (T, —T)/T.)/?. The reader famil-
iar with statistical mechanics will recognize the generic mean-field phase transition.

I emphasize that the disappearance of the superconductivity in the weak coupling
case is driven by the disappearance of the Cooper pairs themselves. This is quite dif-
ferent in strong coupling where the number of Cooper pairs is fixed at energies < |U|.
Instead, the phase transition in the strongly coupled system would be driven by the
long-wavelength phase fluctuations, in precise analogy with the thermal melting of
crystals as discussed in section 4.6. Because in weak coupling the Cooper pair density
itself lives on an energy scale of kgT', it is reasonable to take this into account dis-
cussing the temperature dependence. What right do we have, however, to neglect the
long wavelength O(2) fluctations alltogether? The resolution is elegant, and special
to the weak coupling limit. Recall the discussion towards the end of section 5.6. We
argued there that the spin density wave gap implied a length scale &, the ‘coherence
length’. In the context of superconductivity this is not different and the coherence
length £(T")/a ~ Er/(2A(T)). We learned in the context of spin density waves that
the order parameter fluctuation is frozen out on length scales smaller than &. This
is the same here: the order parameter is composed of large numbers of overlapping
Cooper pairs and this mimics long range interactions, quenching fluctuations (see sec-
tion 5.4). When temperature increases, the gap thereby decreases, but the coherence
length increases. Although one would expect more thermal fluctuations at higher
temperatures, these are ‘eaten’ by the increasing coherence length. At the transition
itself, the coherence length diverges to infinity and no order parameter fluctuation is
possible at alll In strong coupling this is quite different; the coherence length equals
the lattice constant at all relevant temperatures, and in order to adress, e.g., the
behaviour of the order parameter near T, one has work him/herself through the full
critical theory which is not an easy task. In this way, the smallness of the interaction
causes a tremendous simplification of the theory: mean-field theory becomes exact.
The curve in figure 6.9 reproduces precisely the behaviour of the order parameter in
many real superconductors.

This ends the discussion of the fundamental nature of the superconducting state.
There are many more stories to tell. The physics of superconductors is actually a
rather large and entertaining subfield in condensed matter physics. From the the-
oretical side, the above weak coupling theory can be further extended to the case
that the coupling strength V' N(0) is large, while wg/FEF is still a small number. This
is the so-called ‘strong coupling’® or ‘Eliashberg-Migdal’ theory. Some quantitative

8Notice again a semantic ambiguity. True strong coupling is the local pair limit as discussed
in section 6.1, where both parameters in the theory (V/W and wg/Ep) are large. In the present
context, only V/W is large. wg/EF is the more important control parameter. As long as this

number is small, the pairing occurs in k space and the coherence length is large. For these reasons,

193



aspects change, but it turns out that this theory exhibits the same level of control
as the weak coupling theory. This ‘high quality’ theory makes detailed comparisons
possible with a large variety of experiments with many surprising outcomes. I refer
the interested student to the specialized literature®.

6.4 Excercises

6.1 Verify that (6.2,6.3,6.5) form a su(2) algebra. Consider a two site model H =

— —

T - Ty and discuss the physical nature of the various eigenstates.

6.2 Derive (6.6-6.8) explicitely using the results of section 5.2. Specifically, (5.30)
can be directly used after reinterpreting the various operators in this expression,
in order for them to apply in the present context.

6.3 Derive (6.11) explicitely, using the results of section 5.3.
6.4 Proof that (6.15) is invariant under the gauge transformation (6.14,6.16,6.17).
6.5 Show that (6.30) follows from (6.9) and (6.25,6.26).

6.6 Consider a spherical Fermi-surface and demonstrate graphically that the scat-
tering processes of a pair of particles with K # 0 can be neglected, compared
with those involving a vanishing center of mass momentum, if all particles have
an energy |ey — Ep| < wg, while wg << Ep.

6.7 Mean-field theory of the attractive Hubbard model (6.1). Since all electrons
can participate in the condensate (wg — o00) we can directly use the recipy
of section 5.5. Consider now the order parameter amplitudes in real space and
keep track of the phase freedom: ¢; ¢z = Ag+6Ag, and its hermitian conjugate,
while A? = Ayexp(ig;) (A is real). Show that for arbitrary U/W one recovers
(6.58) when A, is taken to be uniform in space. The only difference is that the

—

k summations are no longer restricted.
6.8 Verify (6.64-6.70).
6.9 Check that (6.73) satisfies (6.71).

6.10 A specialty of the BCS wavefunction is that the total particle number N =
P c;%gc,;g is a fluctuating quantity. N is the average particle number.

a. Show that (Bg|(N — N)*|®¢,) = 4 g uivs,

the outcomes of Eliashberg-Migdal theory are qualitatively quite similar to weak coupling BCS,
although there are substantial quantitative differences.

9See M. Tinkham, ‘Introduction to Superconductivity’ (McGraw-Hill, New York, 1975); J. R.
Schrieffer, ‘Theory of superconductivity’ (Addison-Wesley, 1988); G. Rickayzen, ‘Theory of Super-
conductivity’ (Wiley, New York, 1965).
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b. Show that the result under (a.) implies that the root mean square number
fluctuation Ny, = \/<<I>°Cl|(N— N)2|®%,) ~ VN for a fixed density,
changing the volume. Hence, the number fluctuation is unimportant in
the thermodynamic limit.

6.11 Although the direct quasiparticle-quasiparticle interactions vanish in the low

6.12

energy limit, they are in principle still finite at an energy scale wg. An explicit
calculation of these residual repulsive interactions is very complicated and in
practice impossible. It can nevertheless be argued that the strongest residual
interaction will be in the local (hard-core, s-wave) channel. This suggest an
additional term in the quasiparticle Hamiltonian,

Hyr = Veps ) pio—q (6.93)

q

where the (repulsive) ‘Coulomb pseudo potential’ Vi, enters as a free parameter
which can be determined experimentally. Show that the gap equation of the
superconductor becomes in the presence of this term,

A ~ e HVNO=1) (6.94)

with p* = VgpsN(0). It is believed that metals like C'u or the alkali’s do not
undergo a superconducting transition because the phonon-mediated attraction
is smaller than the residual Coulomb interaction: VN(0) — p* < 0.

Strongly k dependent interactions. It is believed that the ‘isotropic’ supercon-
ductor with a momentum independent order parameter, which is explained in
the text, is unavoidable if the effective interactions are phonon mediated - the
locality wired into eq. (6.40,6.41) is unavoidable. This turns out to be different
in unconventional superconductors. It can for instance be argued that spin wave
like excitations tend to mediate strongly k dependent effective interactions.

a. Consider an interaction term of the BCS kind, keeping the momentum
dependence explicit:

— | 7ot
H = Z:EEUCEUCEG =+ Z; VE,E,CE,TC_E,lc_mcET (6.95)
k kR

show that the gap equation becomes,

1 Az
Ay = —==YVip g (6.96)

Py k'E
2N G T e — w2+ A

with AE = zk_" VEE'Op,E'-
b. Recall the Fermi surface of the square lattice tight binding problem at half-
filling (e.g. Fig. 5.8). Assume an interaction which is strongly attractive

along the (1,0) and (0,1) directions in the Brillouin zone while it is repulsive
along the (1,1) and (1,-1) directions. Sketch how the gap function A;
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evolves around the Fermi-surface, assuming (i) Az has the same symmetry
as the Fermi surface (‘anisotropic s’), (ii) A; has a lower symmetry than the
Fermi-surface but it is still even parity. The latter ‘d-wave’ superconductor
is believed to be realized in high T, superconductors.

6.13 Show that the total quasiparticle density of states at zero temperature is given
by (¢ measured from p)

N(0)e
e~ T

For ¢ > A, and p(g) = 0 otherwise. Why is a square root singularity present at
e=A?

(6.97)

6.14 Derive (6.88) from (6.84,6.85).
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7 Electrons in normal metals: the Fermi-liquid
condensate.

One of the few notions of condensed matter physics which are taught in high schools
is that electrical current in metals is due to moving electrons. Freshmen in physics
are offered a more complete explanation. The metallic state is used to illustrate
the workings of plane wave electrons and Fermi-Dirac statistics: the Sommerfeld
model. It is said that one should not worry about interactions between the electrons.
Instead, one should apply Fermi-Dirac statistics to fill up the plane wave dispersions,
to find a Fermi-energy and a Fermi-surface. This construction yields an amazingly
succesful description of the metallic state: it explains why the specific heat and the
thermopower are so small while the magnetic response is of the Pauli-type. Taking
into account in addition the band structure effects of chapter 3, it explains transport
phenomena like the de Haas-van Alphen oscillations. Last but not least, the modern
technique of photoemission allows for a direct observation of these band electrons.
Obviously, there is truth to these non-interacting fermions.

There is one problem: real electrons interact! The logical implication is that the stuff
doing the hard work in the Sommerfeld/band model cannot be ‘just’ electrons. In
order to be non-interacting, the charge of the electron has somehow vanished. In
fact, it can also be seen in a different manner that the non-interacting fermions of
the Sommerfeld model have to be fundamentally different from electrons. The most
important scale parameter in metals is the Fermi-energy which can be translated
into a fermion mass. In all metals, the mass of the low energy fermions is larger than
the bare electron mass (including band corrections). In some systems, this ‘mass
enhancement’ takes a spectacular form: the effective fermions in ®*He are ten times
as heavy as > He atoms, while in some actinide and rare earth systems the fermions can
be as much as 1000 times as heavy as bare electrons (the ‘heavy fermion’ systems).
It is well established that in these systems density and inhomogeneity conspire to
cause strong correlations between the real electrons. Hence, it seems that there is a
one-to-one relationship between the strength of the microscopic interactions and the
mass of the free fermion showing up in the effective theory describing the macroscopic
physics.

We have excercised the notion of ‘low energy effective theory’: strongly interact-
ing bare particles can act cooperatively to create a low energy universe which is
characterized by weakly interacting, particle like excitations. Up to this point we
have only encountered bosonic Goldstone modes: given that the system is a classical
condensate, the physics at the lowest energies is completely described in terms of non-
interacting bosons. This is the key to the nature of the non-interacting Sommerfeld
fermions: the non-interacting fermions found in metals are the fermionic counter-
parts of the bosonic Goldstone modes. We learned that Goldstone type excitations
only exist because of the presence of a condensate. The central question is therefore:
what is the macroscopic, classical object in a metal? The answer is: the Fermi-sphere
itself. The classical aspect is that at zero temperature the Fermi-surface is local-
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ized in single particle momentum space. This is actually a property of a system of
non-interacting Fermions. However, at the moment that the interactions are finite
the exact quantum-mechanical states would not posses the property Fermi-surface:
single particle momentum is not a quantum number of the interacting system. Only
in the thermodynamic limit the Fermi-surface reappears, but now as the product of
a classical condensation process.

The single determinant wavefunction describing the condensate (‘|®%,)’) is of a de-
ceptive simplicity: the Y1's are nothing else than the simple one electron momentum
eigenstates. As we needed real space wavepackets to describe the crystalline state, or
spin-coherent states to describe antiferromagnets, we now need single particle states
which imply the classical object Fermi surface and the only choice available are the
one particle momentum states. Different from the other condensates, this wave-
function reduces to the exact wavefunction of the non-interacting system when the
interactions vanish. This has caused much confusion in the history of this subject:
one is tempted to think that one is dealing with non-interacting electrons plus some
quantitative corrections due to the interactions. This perspective is, however, quite
misleading. The rigid nature of the Fermi-surface is a genuine collective phenomenon
of the classical kind, well comparable with the rigidity of a superconductor or an
antiferromagnet. This rigidity controls the existence of the non-interacting excita-
tions, including the fermions. For instance, the Fermi-surface and the independent
fermions do not exist in one dimension, for the same reasons as that crystals and
phonons do not exist in this dimension. Also the phenomenology of this state is
richer than the litteral Sommerfeld state of non-interacting electrons. This was first
realized by Landau who called this state the ‘Fermi-liquid’.

Next to the independent fermion excitations, the Fermi-liquid condensate also carries
bosonic excitations: the zero-sound of the neutral system (*He) which becomes the
plasmon in electron systems. This is the straightforward way to convince oneself
that one is dealing with the familiar classical condensate. These modes fall in the
Goldstone-class and they correspond with a breathing vibration of the Fermi-surface:
in an interacting system, the Fermi surface behaves as an elastic membrane. As
will be demonstrated in sections 7.2 (zero-sound) and 7.3 (plasmon), these modes
follow from the same kind of reasoning as was used to explain phonons and magnons.
Because of the presence of the low energy fermionic modes, the calculation becomes
technically more complicated. In order to organize these calculations, it appears
necessary to first learn to ask precise questions. For these purposes, the powerful
linear response formalism with its spectral- and response functions is introduced in
section 7.1.

Although the outcomes might surprise the reader, the conceptual content of this
bosonic (zero-sound/plasmons) part of the story is close to the previous chapters.
The novelty is in the ‘non-interacting fermions’ or ‘quasiparticles’. It is impossible
to address those without the help of a minimum of field-theoretic formalism (Greens
functions, diagrams). This formalism serves the purpose of both neatly organizing
complex perturbative calculations, as well as a mathematical enrichment of the physi-
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cist’ view on the world. In section 7.4, I have deliberately sacrified the first aspect
to optimize the exposure of the physics part. The reader is warned: do not use this
section to do calculations yourself! This is the point where traditionally theory and
experiment start to bifurcate and section 7.4 is meant to (a) give experimentalists
some clue about the meaning of discussions during theory seminars, (b) give theoreti-
cians some physical intuition which might be helpful in the study of the real thing!.
Using the Greens function language some key aspects of the Fermi-liquid theory will
be shortly discussed: the quasiparticle mass, the overlap between the quasiparticle
and the bare electron, as well as the vanishing quasiparticle-quasiparticle interactions.
I emphasize that this discipline is not quite a closed subject and recent advancements
indicate that there might be another way of looking at the fermionic modes which
appears as more fundamental. However, this is a very novel development and I refer
the interested reader to the research literature?.

7.1 Spectral- and Response Functions.

Up to this point in this text, the focus has been on the general properties of the
condensed state and we did not worry much about how to precisely measure these
properties. In order to address the rather complicated excitation spectrum of the
Fermi-liquid, it appears necessary to organize the theory using the same questions
as experimentalists would ask. In order to learn anything from a system, one has
to perturb it from the outside. Most experiments in condensed matter physics are
designed in such a way that the external perturbation is infinitisimally weak compared
to the intrinsic energy scales of the system under investigation. As a consequence,
the system itself does not change due to the perturbation, and perturbation theory
can be applied rigorously. This leads to a mathematically precise description of the
outcomes of the measurement process, in terms of the eigenstates of the system. This
is the so called linear response theory. There are two central objects in this theory:

(i) Spectral functions, describing what kind of information can be obtained by
perturbing the system by a single test particle. When the particle is a fermion
this is called a one particle spectral function. When it does not relate to the
fermionic sector, it is called a dynamic form factor.

(ii) The response to an external field is described in terms of a dynamical suscepti-
bility. For the special case of a charge density perturbation one also defines the

I The theory is most easily formulated in the language of functional integrals: J. W. Negele and
H. Orland, ‘quantum many particle systems’ (Addison-Wesley, 1987). In addition, it is useful as
well to study the conventional (Brueckner) formulation as well: ‘AGD’ (‘Methods of quantum field
theory in statistical mechanics’, A. A. Abrikosov, L. P. Gorkov and 1. E. Dzyaloshinskii, Dover)
supported by G. D. Mahan’s ‘Many Particle Physics’ (Plenum). For further background reading on
sections 7.1-7.3, the classic ‘the theory of quantum liquids’ by D. Pines and P. Nozieres (Benjamin,
New York, 1966) is recommended.

2This is the subject of bosonization. The basic idea is that the fundamental excitations of the
Fermi-liquid are the bosonic modes describing the vibrations of the Fermi-surface. The fermions
appear as the kink-like excitations (disorder operators) of the fundamental bosonic fields. See J.
Frohlich, R. Gotschmann and P. A. Marchetti, J. Phys. A, 28, 1169 (1995) and references therein.
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related dielectric function.

In this chapter we only consider density responses. The current response functions,
underlying transport theory, deserve a separate, in depth treatment.

The simplest linear response object is the dynamical form factor. Imagine an exper-
iment of the inelastic neutron scattering variety. A test particle is located at R, in a
system of particles 4 at positions 7;. the interaction potential

Hiy = Z V (Fz - ﬁe) (71)
is weak. In momentum space,

Hin = 3 (Vagy e R + h.c.) (7.2)

q

where p; is the Fourier transform of the fluctuation in the particle density (compare
(4.80)),

o /ddr p(Fe™ 47 =% /ddr (7 — 7)e 0T
= Z e T (7.3)

One could read here as well the charge- or spin density, dependent on the details of
the experiment. For instance, neutrons communicate with the density of nucleons
and the spin density of the electrons. Energetic electrons and photons see in first
instance the charge density of the electrons.

Because of the weakness of H;,;, the Hilbert space can be build from product states
In, P,) of the plane-wave test particle states ~ exp(iP - R,) and the ezact eigenstates
|n) of the system, with energy eigenvalues F,. The exact groundstate of the system is
|0). We now use Fermi’s golden rule: the probability that the test particle exchanges
a momentum ¢ and an energy w with the system per unit time is given by the second
order in H;,;,

" 6w — B, + Ey) (7.4)

P(Gw) =21 Y |(n, P. — §1Hiw 0, F.)

with w = %((Pe — q)? — P?). Because the testparticle is described by a plane wave,
<n7 ﬁe - ﬂHint|O) ﬁe) - %‘(n|p*q:‘|0> (75)
We define
P(q,w) = 27|Vg* S(q,w) (7.6)

It follows that all system specific information is contained in the function,

S(@w) =32 [0 lpgin)[* 6(w — By + Eo) (7.7)
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S(q,w) is the dynamical form factor. S is simply a density of states, weighted by
the (transition) probability |(0]ps|n)|* for the system to be excited to a state |n) by
a density fluctuation with momentum ¢.

The dynamical form factor contains information about the collective ‘bosonic’ res-
ponse of the system. For instance, in a crystal the neutron form factor would be
dominated by peaks corresponding with the phonons. In electron systems, an even
simpler quantity can be measured by photoemission experiments: the one electron
spectral function. |0) is the exact ground state with energy Fj of the system contain-
ing N electrons. In addition, we define the exact states of the system with N 4 1
electrons as |N + 1,i) and energies EX', as well as the eigenstates of the N — 1
electron system |N — 1,7) at E']N ~1 Starting from the N electron ground state, a

single electron in a plane wave state I;, o is created or annihilated. The one electron
spectral function is defined as,

Are(@) = SN +1,ich,|0)]? 6(w — BN + Ey)

+ STUN =1, jlexs|0))? 6w + EN T — Ey) (7.8)
J

which is the density of states of the |N 4+ 1) many electron states, weighted by
the probability to arrive in these states, starting from the N particle ground state
with one additional electron/hole carrying momentum k and o. Notice that in a non-
interacting system this spectral function would consist of delta-functions at the band-
dispersions wy. This is also the reason for the sign convention of the energies in (7.8):
upon the addition of an electron (unoccupied states), the energy cost is a positive
number. However, upon the creation of the hole (occupied states) the energy cost
becomes a negative number, the more negative when the excitation energy increases.
This is just a convention to draw the electron addition- and electron removal spectra
in one picture, with the added advantage that one uses the same convention as in
independent electron problems where this convention is natural because of the Pauli
principle. As we will see, in interacting problems A has a much richer structure
than in the independent particle limit. A is roughly measured in the combination of
photoemission (occupied states, N —1) and inverse photoemission (unoccupied states,
N + 1) experiments. Since A is a central quantity in the theory, this experimental
technique has become quite popular recently.

== FExcercise 7.1

The system can also be perturbed by an external magnetic- or electric field. The
(linear) response of the system on the presence of the field can be expressed in terms
of the dynamical (spin or charge) susceptibility x(¢,w). This quantity can also be
expressed in terms of the exact quantum mechanical states of the many particle
system. This derivation is more laborious. We counsider a scalar, time dependent
field with potential (7, ¢) coupling to one of the densities (spin-, charge-, number)
p(7,t) of the system, described again by (7.1-7.3). First, a choice has to be made
regarding the temporal boundary conditions. A natural choice is to switch on the
external field at t = —oo, to let it grow as ~ €™, with a rate n which is small compared
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to any response time of the system, so that the system can adjust adiabatically to the
field. At the end of the calculation, the limit n — 0 is taken®. The time dependent
perturbation becomes,

H, = Z / (2@, w)e " 4 h.c) (7.9)

where ¢(q,w) corresponds with the Fourier component of the potential at frequency
w and momentum ¢.

Assume that the ezact wavefunction of the system at time ¢ (Schrodinger picture)
can be determined in the presence of the external field. The mean density fluctuation
at time t is,

(p(4,1)) = (b(7, 1) pgl$ (7, 1)) (7.10)

The perturbation is taken to be periodic in time, and because the system can follow
the growth of the oscillating field adiabatically,

(p(, 1) = (p(q, w))e o+ (7.11)
with

(p(@,w)) = ((r,8)|pgltp(r, 1))t~ (7.12)
(p(q,w)) is the response of the system. This quantity is normalized with regard to
the magnitude of the external potential,

. (p(7,w))
X\q,wW) = ———+ 7.13
(@) o(q, w) 5

x(¢,w) is the dynamical (spin, charge, - - -) susceptibility.

x only depends on the intrinsic properties of the system if the field is choosen to be
weak enough such that the response is linear ({p) ~ ). Different from the scattering
experiment (7.4-7.7), the external field already shows up in the first order of the
perturbation expansion of (7.13). The time development of the exact wavefunction
is given by,

O (1) = (H + ) () (7.14)

with the boundary condition that at time £ — —oo the system was in the groundstate
|0). |¥(t)) is expanded in the complete set of eigenstates of H (|n)),

(T(®) =3 an(t)e'|n) (7.15)

n

3A subtlety: in order to prevent heating, one should first let the strength of the potential go to
zero, before n — 0. This 1s automatically taken care off by the perturbation theory.
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while at t — —oo all a,, = 0’s, except ao(t = —00) = 1. Up to first order in ¢ (n # 0),
an (t) _ (n|,03-|0>‘,0(q, w) e(i(—w+En—Eo)+n)t
- En 4= EO + )

(nlpgd0)e™(¢,w) (it sn—ro)tn)t (7.16)
w+ By — By —n

= BExcercise 7.2

In addition, the average charge fluctuation is to first order,

(0(@1) = 32 {(0lpeln) an(t) =50 1 (nlpgl0) as(t) =5} (7.17)

n

combining (7.16,7.17),

<,0(L7, ) = o(q,w) e(—iw—m)tz { |<n|P;|O>| _ |(n|/)q|0>|2 | }(7.18)

—~ \w—E,+Ey+in w+E,—Ey+1in

— FExcercise 7.3

The susceptibility follows by comparing (7.18) with (7.12,7.13),

. 1 1
o) = 5 Ol - - s ) (9

n

Comparing (7.19) with the expression for the dynamical form factor (7.7) shows that
this quantity and the dynamical susceptibility are related,

3 1 1
= [ dw' S(q,u' — 7.20
0/ N S(q’w){w—w’+in w+w’+in} (7.20)

The susceptibility is a complex quantity. As will become clear, the in-phase (reactive)
real part of x (') relates to the reversible response of the system, while the imaginary
part (x”) corresponds with the irreversible, dissipative respons (the losses). Given
that f(z) is analytic on the complex plane (P is the principal part),

lim | /x 2L inf(a) (7.21)

=0/ T —a ¢ ?'.r}'
or symbolically (the Dirac relation),

| 1
lim ———— =P

n—0 T —aFin T —a

+ind(z — a) (7.22)

which will turn out to be a very useful relation: it links the delta function, relating
to a density of states, to a complex function. This is a main reason that much of
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what follows will appear as an excercise in complex analysis. Using (7.22), the real-
and imaginary part of y can be written as,),

X (Gw) = Zdw’ S(q,w)P (2—“/) (7.23)

wZ _w/2

X'(Gw) = —m{S(gw) =5 ~w)} (7.24)

= Excercise 7.4

The relations (7.23) and (7.24) give a clear insight in the nature of the dynamical
susceptibility. The meaning of the dynamical form factor S is immediately clear:
it is a measure of the number of real (not virtual) transitions with energy w and
momentum ¢ in the system, caused by the presence of the test particle. Although it
is obvious that the dissipative response of the system to the external field (x") has to
relate to these real excitations as well, the precise form (7.24) is not obvious at all,
let alone that the reactive part relates to S by (7.23). Because the above derivation
is rigorous, (7.24) has a mathematical status: it is called the fluctuation-dissipation
theorem - X" is the dissipation and S the fluctuation®

Many experiments relate to the ‘twin’ dynamical form factor - dynamical suscepti-
bility. Let us consider a simple example. Imagine a magnetic system with a singlet
ground state. In the presence of spin-orbital coupling, a magnetic field can couple
this singlet to excited states, carrying a spin (triplets, quintuplets, etcetera). The
potential ¢ becomes ¢ ~ BS* and B is an external magnetic field. Neutrons carry
spin and they can loose energy by exciting magnetic states. We assume that only
one triplet state is important (all other states are at very high energy), while this
state is nearly decoupled from the rest of the world so that it lives for a nearly in-
finite time. The energy-loss spectrum of the neutron is directly proportional to the
dynamical formfactor, and the latter corresponds with a single delta function peak
(infinite life-time) at the triplet energy ¢o (figure 7.1),

S(q,w) = AS(w — &) (7.26)
Using (7.23,7.24), the dynamical susceptibility follows directly (figure 7.1),
2¢€9
(= . A .
X (4, w) g
X'(q,w) = —WA((S(w — &) — 0w+ 50)) (7.27)

By applying the external field one can attempt to measure the dynamical suscepti-
bility directly. This is in practice not so easy. It is impossible to construct a magnet,
producing a field with a modulation in space (§) or time (w) which is anywhere close

41t is straightforward to generalize this to finite temperature. Among others,
di
NS(f,w=0)=— / %X”((j’, w)coth(%g) (7.25)

S(¢,w = 0) is the mean quadratic density fluctuation (pzpg).
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Figure 7.1:the toy-linear response experiment. The magnetic state would show up as
a peak in an inelastic neutron scattering experiment (S). x" is also characterized
by peaks, but now at positive and negative frequencies, while x' (including the bulk
susceptibility xo) follows from causality.

to the microscopic scales, and therefore the measurement is limited to ¢ — 0 (not
important in this local system) and w — 0. In a magnetometer the reactive response
is measured and according to (7.26) the ‘bulk susceptibility’ is,
2A
Xo=x(@=0w=0)=-— (7.28)
€0
Because of the definition of x, the negative sign of , implies a paramagnetic response
and this kind of paramagnetism is called ‘van Vleck paramagnetism’.

This example illustrates in a realistic manner how linear response is used in practice
to let different kinds of experiment cooperate. The inelastic scattering experiments
(neutron scattering for spins and nuclei; electron energy loss and X-ray scattering for
charge) have the great advantage that they give access to large regions in frequency
and momentum space. At the same time, they are technically difficult and by their
very nature not very accurate. For instance, it might be quite difficult to obtain the
matrix elements, coupling the neutron spin to the spin of the electron system. On the
other hand, the bulk experiments (magnetic susceptibility, resistivity, specific heat)
are very limited in their ¢ and & range, but are highly accurate and can be used to
‘sauge’ the dynamical information®. This ‘orchestrated’ experimentation has been

5In addition, there are experiments which cover a larger part of §,w space. Optical experiments
(optical conductivity/reflectivity) in the linear response regime cover the charge (current) response
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the true driving force behind the progress in condensed matter physics.

7.2 The Fermi-surface: statistics or condensation?

As I already announced in the introduction, the independent particle picture for
metals is quite misleading. Instead, one can better view the Fermi-liquid state as a
classical condensate, albeit one which carries a richer physics than the condensates
we have encountered in the previous chapters. Next to the usual bosonic Goldstone
excitations, it carries fermionic ‘modes’ as well, and the latter are harder to under-
stand than the former. In this section, we will focus on the nature of the rigidity of
this state, as well as on the bosonic excitations as implied by this rigidity, to find that
this part of the story fits quite well in the paradigm of section 1.2. In this section, the
focus is on fermion systems without long range interactions: the neutral Fermi-fluid.
The results as obtained in this section apply directly to *He and the theory is easily
extended to include the charged (electron) Fermi-liquid, which will be discussed in
the next section.

Let us in first instance neglect the ion potentials and consider the homogeneous
fermion-gas or ‘jellium’: we imagine that the particles move in a flat background
potential. This simplifies the discussion appreciably while the physics does not change
qualitatively by the presence of a more interesting background potential. The essence
of the Fermi-liquid is of a deceptive simplicity: the single determinant wave function
defining the classical state (Eq. 1.1) is the simplest possibility one can imagine for
fermions,

|B¢) rr, = Hgyck | vac. ) (7.29)

the ground state wavefunction of a system of non-interacting fermions! At first sight,
it might sound odd to identify this wavefunction with something classical. One should
keep in mind, however, that: (a) in the presence of interactions, (7.29) is not an eigen-
state of the system; (b) the true eigenstates would look like coherent superpositions
of large numbers of single determinant states, and in this regard (7.29) is neither bet-
ter, nor worse than the other condensate wavefunctions we learned to appreciate; (c)
there is nothing arguing against constructing condensate wavefunctions in momen-
tum space, as we learned to appreciate in the context of weak-coupling magnetism
and superconductivity - the only novelty is that we can no longer continue to a strong
coupling, real space picture. The coherence length is infinite, because there is no gap.
(d) As will be explained, (7.29) implies rigidity and Goldstone modes when the in-
teractions are finite, and these properties make the condensate qualitatively different
from the non-interacting system. This looks quite similar to the other condensates.
For instance, in one dimension the Fermi-liquid cannot exist, for the same reasons
that the crystal cannot exist.

Since (7.29) describes non-interacting electrons, one can easily confuse oneself with

on the w axis, but are limited to ¢ — 0 because of the small momentum of the phonon. NMR yields
information on the ¢ behaviour of x away from § = 0 but measures at very low frequency (typically
MHz).
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the thought that this is all controlled by interaction strength: the non-interacting
system has to be corrected quantitatively by perturbation theory for the effects of
interactions and when these are weak, the corrections are small. This viewpoint is
abundant in the older literature. Unfortunately, it is severely flawed. Interaction
strength is in first instance irrelevant for the (non)ezistence of the Fermi-liquid. The
existence of the Fermi-liquid is controlled by the same parameters which control the
existence of the other classical condensates (crystals, antiferromagnets, superconduc-
tors): dimensionality and microscopic quantum fluctuation. For instance, despite
the gigantic interaction strengths, Fermi-liquids are realized in the three dimensional
heavy fermion systems. At the same time, it can be proven that the Fermi-liquid
disappears in a one dimensional system at the very moment that the interactions be-
come finite. Although the books are not yet closed on the subject, it seems that the
Fermi-liquid state is always realized in infinite dimensions, at least if no competing
classical condensations intervene®.

This confusion was partly based on the fact that a limit can be identified where the
effects of the interactions litterally vanish: the high density limit. This is a peculiarity
of the fermion system. For classical objects or bosons, the effects of the interactions
become more severe if the density increases; recall the discussion in section 5.1. In
fermion systems, however, the average kinetic energy of the particles increases faster
with density than the average interaction energy, and it is the ratio of these two
which determines the coupling strength. 7, is the radius of the sphere containing
precisely one electron charge (r? ~ 1/ng, ng is the density). The Fermi-energy is a
measure of the kinetic energy and this increases as Ep ~ 1/r? with decreasing g,
while the Coulomb energy increases slower, E,., ~ 1/rs, and the ratio Ey,/Er — 0
when ng — oo. The perturbation expansion around (7.29) could then be interpreted
as a high density expansion. Although it is true that the numerical effects of the
interactions become less important when the density increases’, it is equally true
that this perturbation theory is singular if the dimensionality does not allow the
condensate to form, regardless the density of the system.

The next question is: given (7.29), what is the order parameter and the associ-
ated ridigidity of the Fermi-liquid state? This is equivalent to: which symmetry is
spontaneously broken? The only physical feature carried by the state (7.29) is the
expectation value of the number operator for all single particle momenta k and spin
0-7

(ng,) = 0(k — k) (7.30)

The specialty of the non-interacting state is that this average shows a discontinuity,
and this discontinuity actually defines the Fermi-surface. Since for every k the locus of
the discontinuity can be determined (E r) we can establish a surface in single particle
momentum space on which the discontinuities lie: the Fermi surface. We need all

5For the ‘dynamical mean-field theory’ becoming exact in d — oo, see Vollhard et al, Rev. Mod.
Phys., in press.

"This explains the success of independent fermion theory in astrophysics; the cores of heavy stars,
neutron stars, etcetera, are all very high density objects.

207




fermions to accomplish this, and the Fermi-surface is a collective property of the
system, albeit a simple one in the non-interacting limit. Single particle momentum
does not commute with the interaction term in the Hamiltonian and the exact ground
state of the interacting system does not carry single particle momentum as a quantum
number. Because the single particle momenta are fluctuating quantities, it is not
possible to construct a precisely determined object out of these fluctuating states: the
exact ground state of the interacting Fermi system does not allow for the existence
of a Fermi-surface! The localization of the Fermi-sphere in single particle momentum
space involves a symmetry breaking and this is the classical aspect of the Fermi-liquid.

Hence, the problem is that according to exact quantum mechanics it is not possible to
localize the Fermi-sphere in single particle momentum space. It is again interesting
to consider the situation where the symmetry restoring fluctuation gets out of hand:
one dimension. As we will see in a moment, it is not hard to identify modes which
describe the motions of the Fermi-surface around its average position, and it is the
admixing of these modes in the classical (Fermi-liquid) ground state, describing a
‘wobbling’ of the Fermi-surface in & space, which renders the perturbation theory
around (7.29) unstable. Recall the discussion towards the end of section 6.3, where
I argued that coupling strength tunes the magnitude of the quantum fluctuations.
These fluctuations show up in the ultraviolet of the Fermi-surface wandering problem
and by approaching the weak coupling limit, the dimensionless coupling constant
measuring the microscopic fluctuation becomes quite small. The charge and spin
density modes describing the Fermi-surface motions are much like phonons and the
classical state is always killed by the longest wavelength modes. The net result is
that the one dimensional interacting fermion system becomes a floating solid in the
weak coupling limit, in terms of the collective modes describing the Fermi-surface
motions. Accordingly, the Fermi-surface becomes ‘fuzzy’ in k-space and the state
which is realized instead is called the ‘Luttinger liquid’.

—

k

Figure 7.2:momentum distribution of a Fermi-liquid (full line), which is a super-
position of the discontinuous independent electron distribution (dashed line) and a
continuous contribution due to the vacuum fluctuations (dotted line).
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We find a repetition of a now familiar pattern: a single determinant wavefunction
defining an order (the location of the Fermi-surface), which is violating quantum
mechanical symmetry requirements. Apparently, this state is carrying as well order
parameter modes which are capable of disordering the state when the dimensionality
becomes too low. What happens in higher dimensions? At least ind = 3 (d = 2 is not
completely clear), this condensate is very often realized. As for the other condensates,
this does not mean that (7.29) becomes exact: there are still quantum fluctuations
reducing the magnitude of the order parameter. I already stated that the localization
of the Fermi-surface is in a one-to-one correspondence with the discontinuity in the
momentum distribution function (ny) and the height of this discontinuity can actually
be used as the order parameter. The real ground state wavefunction of the Fermi-
liquid, including the fluctuations, is of the same form as Eq. (1.1),

|Ppr) = A H,ggcga | vac. ) + Zai|@i> (7.31)

and the states |®;) will correspond with excited states of the independent particle
problem. At the moment something is excited on top of the Fermi-sea, the disconti-
nuity in the momentum distribution disappears - for instance, recall the Fermi-Dirac
distribution at finite temperature. As a consequence,

(Bpplng|®pL) = A 8(k — kp) + f(F) (7.32)

where f (E) has to be continuous at kp because this contribution originates in the
®’s which are characterized by the absence of a discontinuity in their momentum
distributions. The real momentum distribution is indicated in figure 6.2. Hence, the
fluctuations decrease the magnitude of the discontinuity, but as long as the disconti-
nuity exists, the Fermi-surface is localized and the state is of a classical nature.

The added difficulty encountered in the Fermi-liquid is that this state is also charac-
terized by fermionic excitations at arbitrarily low energies, and the structure of the
theory underlying these ‘modes’ is quite different from that of the Goldstone bosons.
This will be the subject of section 7.4, where it will be shown that the finiteness
of the discontuinity implies (a) that these fermions become non-interacting in the
low energy limit, (b) the overlap with the bare fermion, as measured by the one
particle spectral function (7.8), is finite and this overlap (the ‘pole strength’, Z) is
actually directly related to the weight of the classical component in the ground state
wavefunction A2, (c) it is demonstrated that this pole strength is actually inversely
proportional to the enhancement of the effective mass of the quasiparticle. In the
indepent electron limit (4% = 1) the mass of the quasiparticle equals the mass of
the electron. However, when the weight of (7.29) decreases in (7.31), the mass of
the quasiparticle increases: a quasiparticle mass of 1000m,, as found in the heavy
fermion systems, means that the probability that the vacuum is in the classical state
is as small as 1/1000. Despite this small weight, this classical component is still in
full control of the macroscopic properties of these systems!

Next to this fermionic sector, the Fermi-liquid also carries a sector of bosonic excita-
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tions. This looks much more familiar: it amounts to a variation on the now familiar
theme of classical order. For finite interactions, the Fermi-surface becomes a rigid
object. Accordingly, it carries modes describing coherent (propagating) vibrations of
the Fermi-sphere and at long wavelengths these obey the Goldstone theorem (linear
dispersion, infinite life-time). Let us first consider the case of short range interactions:
the neutral Fermi-liquid which is realized at low temperatures in >He.

In contrast to the other condensates, the Fermi-liquid can only be formulated in
momentum space and we are forced to set up the fluctuation theory in momentum
space as well. This is technically more demanding, but the principles are the same as
in real space, as we already explained in section 5.6. The present problem is in fact
easier than the problem addressed in section 5.6, because the classical state (7.29) is
easier than the spin density wave, and we will here pursue the full ‘Random phase
approximation’ (RPA). The simplification comes from the fact that the classical state
is also the ground state of the independent particle problem. Let us therefore first
study the excitation spectrum of the non-interacting system, using the linear response
formalism of section 7.1. The Hamiltonian of a system of non-interacting fermions is,

HY =Y EEC]J%JCEU (7.33)
ko

The fermion density fluctuation at wavelength ¢ is described by the operator (eq,
(1.80)),

(7.35)
describing an electron-hole pair excitation with center of mass momentum ¢.

— Excercise 7.5

An external scalar field is switched on, which couples to the fermion density according
to (7.9). In the presence of this field, the equation of motion for the electron-hole
pair operator becomes,

iWige = [Pige M+ Hex] (7.36)

= (&8~ i) Pige + {C;%acﬁa B C;;Jr@,,chqa} € Pt (T w) €7 €™ +
O CL:,;UCEW} € Pt (T, w) €' €™ (7.37)
In the regime of linear response, the external field does not change the system of

fermions and since (7.30) is exact in the absence of interactions, we can set n} =

((:J-'Eac;;ﬂ) = 0(k—kp) and <c£ac-¥ +2g0) = 0. The time-dependent electron-hole operator
is expressed as,

Pige(t) = prgy (w)e™™" - €™ (7.38)
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Filling in (7.38) in (7.37) and taking the expectation values yields for the density
susceptibility (7.13),

- Zﬁ(ﬂ*r‘a(‘”))
N(Gw) = === (7.39)
()oext(q:w)
= 3! T~ Mg (7.40)
= w *EE+EE+{T+?J?}'

which can also be written as,

(G w) = np(l—mp,) { . - L } (7.41)

w—€pteEp T Wt Ep— €y TN

-

k

by relabeling: k— —k— 0,65 — €pyg — —EF T gy In (7.41), the form x" ~
S(w) — S(—w) is recognized.

—> BExcercise 7.6

Let us now switch on the fermion-fermion interactions. A pair interaction in a
Galilean-invariant system, like the jellium, can be written in terms of the Fourier
components of the particle density as,

V
=Y o= Y 5 Ch s i Chr i G0 (7.42)
q kk!'qoo’
with
1 — ]
V, = > V(|R]) e (7.43)

In the interacting system, the time development of the electron-hole pair operator
also relates to the commutator of Prio with Hy,

[Ptgo M) = Z (%) {p5 (chyCrggo = C;tzwacﬁwa) + (¢ Cag — C;T;+ﬁaclz+¢a) P} (7.44)
P

Together with (7.37), this equation has the same status as the exact expressions
(5.56) or (5.148), which were encountered in the context of magnetism. It is no
longer possible to solve the equations of motion exactly. At this moment we need the
notion of the Fermi-liquid order parameter, to decouple (7.44). In precise analogy
with (5.106), we assume that the operators describing an electron-hole fluctuation
can be decomposed in a scalar, ‘vacuum amplitude’ part corresponding with (7.30)
and a ‘harmless’ fluctuation,

cl

0
v Chaqpo = Of 7 + 0N, (7.45)

211




to neglect the effects of the quantum fluctuations dng in first instance®. Consistency

with (7.45) requires CLUF,;UCIZ g = e 0N, 7o+ and together with (7.43) the equation

of motion, describing the classical linearized dynamics of the electron-hole pairs,
becomes

pr) = (65 = €ir )P + (1 — 1hyy) (e0ens (T w)e™ €™ + Vy(pg))  (7.46)

This equation has the same status as (4.22) in the context of crystals, or (5.60) in
the context of the Néel state. Summing over k, using (7.40),

(pq(w)) = x0(q, w) (SOext((T, w) + Vq(p(y(w))) (7.47)

and it follows that,

r {pr(w))
S ) (7.49)

il & VqXO((_?a w)

(7.49) is an important result. Although the fluctuations give rise to large quantitative
corrections, the form of (7.49) survives in the fully renormalized low energy theory.

Despite its simple form, (7.49) has a rich physical content. The reason is that the
susceptibility of the non-interacting system, Yo, is a rather complicated function. For
the d = 3 jellium, the integral appearing in (7.40) was for the first time solved by

Lindhard. The imaginary part of this so-called Lindhard function is relatively simple,

X w0) = o [0k — B )(kk — K2) = ke = k) - (k= k)] (7.50)

with (g7 = ¢*/2m, as usual h = 1),

ky = -qu leq % wl (7.51)

— Excercise 7.7

The real part is more complicated ( In a d=3 jellium, the density of states at Er is
NO = 377,0/2EF),

3no m? i g+ qup +w
(7 = ——— {1 AEpe~ — (e ln |
XO(qvw) 2EF { + 2qu3 ( Fa() (61] +(U) ) n E(}’_ qup +w
2 €q+ qup —w
ABres — (67— w)d)In |22 = 7.52
+2kpq3 (4Breg = (eg = w)")In g+ qur +w ( )

8This is the origin of the vocabulary ‘random phase approximation’. When this theory was
invented the ‘approximation’ was rationalized by referring to the cancellation of the contributions
coming from ¢ # P because of their rapidly varying phases. See D. Pines and P. Nozieres, ‘The
theory of quantum liquids’ (W. A. Benjamins, 1966).
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Figure 7.3: general appearance of the imaginary part of the RPA dynamical suscep-
tibility. In the grey area in momentum/frequency space, incoherent quasiparticle-
quasihole excitations are found. In addition, the zero-sound mode of the neutral
Fermi-liguid and the plasmon of the charged Fermi-liquid are indicated as well.

In order to interpret g, we first focus on the imaginary part: we learned from linear
response theory that the positive frequency part is a measure for the density of real
excitations at momentum ¢’ and energy w. In the absence of interactions, the spectrum
of density excitations is exhausted by the particle-hole excitations of a given center of
mass momentum ¢ and energy w. Xy is nothing else than the particle-hole density of
states. In figure (7.3) it is indicated where xj is non-zero in momentum-energy space
by the grey area, as follows directly from the kinematics.

— PExcercise 7.8

In the non-interacting limit, the response of the Fermi-gas to a density perturbation
is incoherent. The system adjusts to the density perturbation by exciting indepen-
dent particle-hole excitations, and there is no sense of rigidity: its response is like the
response of a gas. This changes qualitatively at the moment that the interactions be-
come finite. Although there are still independent fermion excitations (now described
in terms of the quasiparticles), collective propagating excitations are found as well
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which actually dominate in the long-wavelength limit. These have the same status as
the other Goldstone modes we already encountered. These modes vividly illustrate
the rigid nature of the Fermi-surface in the interacting system: the Fermi surface
vibrates as an overinflated balloon! The mode where the sphere vibrates uniformly
(s-wave) is the most important one, and this mode has been observed in *He, where
it is called ‘zero-sound’.

In the long wavelength limit, the detail of the (short range) interactions becomes
unimportant and we assume a hard-core interaction: V; — V. (7.49) simplifies to,

x(qw) = 1—_}%% (7.53)

In first instance, we are interested in the imaginary part of (7.53) to find out about
the excitations of the system. It follows directly from (7.53),

i ) = xé’(d';w) (7.54)
(1= Vx6(@w)) +(Vx5 (3 w))?

There are two possibilities:

(i) ¢ and w are outside the grey area of figure 7.3, such that x((q,w) = 0. The
imaginary part of x is only non-zero if the denominator vanishes. When this happeuns,
a pole is found in the spectrum

X'(@w) = 2m6 (1= Vxo(Gw)), X3(@w)=0. (7.55)

The condition to find the pole is,

— ]- —
X()(Qqu) . 97 Xg(QSawq) =0 (756)

Hence, a sharp, isolated excitation is found at ¢; and wg. This is the signature of
a mode - also phonons and magnons would show up in this way in the dynamical
susceptibility. The condition (7.56) can only be satisfied if the interaction is finite
(V # 0) and this is the zero-sound mode.

(ii) The condition for the real part in (7.56) is satisfied but xg(ds,w,) # 0 (inside
the grey area of figure 7.3). Choosing Vxj to be small compared with wg, this would
correspond according to (7.54) with a Lorentzian peak which is centered at g, wg, with
a width ~ Vx{ (s, wg). The collective excitation has now a lifetime 7 ~ 2/Vx{(q5, wg):
the zero-sound mode is damped because it can decay into the continuum of incoherent
particle-hole excitations. This process is called Landau damping. Notice that this is a
different process than the damping coming from mode-mode interactions, as discussed
in section 4.4. The present theory is still on the Gaussian level, and the Landau
damping is an additional decay channel, caused by the presence of the quasiparticle
excitations. It actually turns out that the decay rate is rapidly increasing when the
zero-sound mode penetrates the particle-hole spectrum and very quickly the mode
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becomes overdamped and the excitation spectrum start again to look like that of
independent quasiparticles (xg).

When are the conditions (7.56) satisfied? Let us focus on the Goldstone regime of low
frequencies and large wavelengths, where the Gaussian theory is expected to work
best. (7.52) is expanded for small ¢ and (7.56) becomes,

1

= 14— 7.57
MY (7.57)

Wq

qsVF

Wy R qsUF
Wy — (VR

In

= FExcercise 7.9
For arbitrary coupling strength NyV there is one solution,
Wy = ¢qs (7.58)

We recover the usual linear Goldstone spectrum! The zero-sound velocity depends
strongly on the coupling strength, and is given by the solution of the implicit equation,

1 1
¢=up (1 + N0V> CEaT (7.59)

cC—Vp

This has an interesting behaviour in the weak coupling limit. For NyV — 0, ¢ — vp.
For small ¢, the upper bound in energy of the particle-hole continuum behaves as
Wy = vrpq+q*/2m — vpq and it is found that the zero-sound mode has disappeared
completely in the continuum when the interaction is zero: zero-sound does not exist
in the non-interacting system. For every finite interaction strength, the propagating
mode however exists, as long as the wavelength is large enough. (7.59) reduces in

weak coupling (NpV << 1) to,

c=vp (1 + 2(#) (7.60)

== FExcercise 7.10

This behaves in a way analogous to a weak coupling instability: for every finite
coupling strength the mode exists because ¢ > vg, although the mode is exponentially
close to the onset of the continuum initially - the mode exists always, because the
upper bound of energy of the continuum increases quadratically for small energies
(figure 7.3).

For increasing coupling strength, the Fermi velocity becomes a smaller and smaller
fraction of the zero-sound velocity: the rigidity of the Fermi surface increases. Ac-
cording to (7.59), the zero sound velocity should diverge at NoV — 1, or V ~ Ep.
This is unphysical. In order to treat the strong coupling regime, one has to pur-
sue the perturbation theory (treating the fluctuations én) to find, among others, an
upward renormalization of the density of states and a downward renormalization of
the effective interactions. The resulting effective ‘Landau Fermi-liquid theory’ has
nevertheless the same basic structure as the bare theory presented here, which is
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Figure 7.4: zero-sound corresponds with a density mode, which in the Fermi-liquid
should be thought off as an s-wave (breathing) vibration of the Fermi-sphere.

only quantitatively accurate in the weak-coupling limit. It is again the principle of
adiabatic continuation at work.

How to interpret zero-sound? The external potential excites a density oscillation in
the Fermi-liquid. This means that the Fermi-sphere shrinks in the regions with a
depleted density and expands in regions with an enhanced density, as indicated in
figure 7.4. Because the Fermi surface behaves as an elastic membrane, the medium
can support a propagating Fermi-sphere breathing mode. In addition, at a lower
frequency it is also possible for the system to respond to a density perturbation
by exciting independent electron-hole pairs. This gives rise to a gaseous response,
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because these excitations do not relate to the rigidity of the system.
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Figure 7.5: experimental results for the damping of sound (upper panel), and the
sound velocity (lower panel) in *He at millikelvin temperatures.

[ find zero-sound the most counterintuitive manifestation of rigidity. To honor this,
I will make an exception to the set up of this text by showing experimental data.
Although zero-sound has not yet directly been detected in 3He by inelastic neutron
scattering, it clearly shows up in experiments studying the propagation of sound. Zero
sound is a mode fluctuating the density and it therefore looks quite like ordinary
(“first’) sound. In figure 7.5, the damping (‘attenuation’) of longitudinal acoustic
density waves in *He is shown as function of temperature. It is seen that the decay
rate initially increases as function of temperature, to turn over at ~ 10 mK to decrease
again. This is accompanied by a change in sound velocity. What is going on? The
crucial observation is that, regardless the dimensionality of space, the Fermi-liquid
condensate disappears at any finite temperature: the Fermi-liquid undergoes a zero
temperature phase transition. At finite temperature, the discontinuity disappears
because of the thermal smearing, as described by the Fermi-factor, and the Fermi-
surface is fuzzy®. Hence, only at zero temperature the decay rate of zero sound
vanishes (see figure 7.5). At any finite temperature, the Fermi-surface has lost its
rigidity and, as a consequence, the Goldstone theorem no longer applies. Zero sound
still exists as a transient at a finite temperature, to get however quickly overdamped.
At the same time, the thermal fluctuations release quasiparticle excitations from the
condensate and at energies less than kg7 these behave as a gas of classical particles.
When the density of this classical gas becomes large enough, normal (first’) sound

9Notice that the rule that a quantum-mechanical problem looks like a similar classical thermal
problem in one higher dimension is not obeyed at all in the context of Fermion systems.
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starts to propagate, and this is the mode which is found at high temperature. The big
difference is that first sound is a hydrodynamic mode, finding its origin in a dissipative
dynamics and hydrodynamic conservation laws, while zero-sound is a consequence of
the rigidity carried by the Fermi-liquid condensate.

7.3 The charged Fermi liquid.

In the preceding section, we dealt with fermion systems with short range interactions
and these are not found in great abundance in nature: *He is the only example.
Metallic electron systems are of course abundant, but these are characterized by
interactions with a long range: Coulomb interactions. These long range interactions
have an important effect: they cause the Golstone mode to live at a finite frequency
in the long wavelength limit. In a metal, the ‘massive’ Goldstone modes are called
plasmons.

Figure 7.6

It is actually quite easy to understand the origin of the plasmon gap. In order to
avoid the ¢ = 0 Coulomb divergency, one should consider the charged fermion system
always in conjunction with a compensating positive background. The discussion of
zero sound in the previous section implied that the Fermi-liquid responds as a rigid
object to a density fluctuation. In the charged Fermi-liquid, this (number) density
fluctuation is at the same time a fluctuation in the charge density. How does the § — 0
Goldstone mode look like in such a system? This is indicated in figure 7.6: the Fermi-
liquid vibrates as a rigid charged object against the compensating, oppositely charged
background. Because the interactions are now long ranged, we have to care for a
boundary effect. Displacing the Fermi-liquid by an amount u, the resulting charge
accumulating at the left (right) boundary is —ngeu (ngeu) per surface unit. This
causes an electric field of magnitude 47X the surface charge = 4mngeu. The equation
of motion becomes mii = —4mwnge®u, where the electric field acts as a restoring force.
The solution is u ~ exp(iwyt), where the ‘plasma frequency’ w2 = 4mwn,e? /m!.

Let us now consider the problem with long range interactions in RPA. In a jellium,

104 similar mode is also found in thermal plasmas. This should be looked at as massive first
sound.

218




the Coulomb interaction becomes,

Ly n(B)n(F) (7.61)

R1 Ry |R1 ‘

n(ﬁ) measuring the density at position R,
=3 vk 4g, (7.62)

with the fermion operators in position representation. Because the jellium is Galilean
invariant,

H= Z EEC;T;gcka 2N Z Vapgo—-g (7.63)

ko J#0

with ez = h?k?/2m. The density operator is in momentum space,
— t
=2 G, Chiao (7.64)
ko
and V7 is the Fourier-transform of the Coulomb interaction,
Vyies —— (7.65)

Notice that one should neglect ¢ = 0 in the interaction term. This contribution is
exactly cancelled by the potential of the stabilizing positively charged background.

All we have to do is to repeat the zero sound calculation of the previous section with
the modified interaction potential. It follows directly from (7.56),

o dme? .
Voxo(dhwg) = Z Xo (@, wq) (7.66)
_ re ) (1 — Mirg) 265 — €g4g)
¢ : wg — (€5 — €549)°
=1 (7.67)

Anticipating on the outcome that w, # 0 when ¢ — 0, the imaginary part of
X0(0,wy=0) can be neglected. By expanding x; (7.52) for small ¢ one finds,

Wy = W, {1 2 % (‘Z’—j)z + 0(q4)} (7.68)

with the plasmafrequency (w, = wy=0),

2
PP (7.69)

P m

recovering the outcome from the simple argument given at the beginning of this
section. The outcome for the full x” is also indicated in figure 7.4. Except for the
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different frequency behaviour of the plasmon, it looks very similar to zero-sound,
including the Landau damping setting in when the plasmon hits the particle-hole
continuum at large momenta. The plasma frequencies in good metals are typically
quite large (~ 10 eV) and plasmons are easy to observe directly, using electron energy
loss spectroscopy (EELS).

—> BExcercise 7.11

What are the physical consequences of the plasmon gap? In section 5.4 we learned
that long range interactions tend to help classical condensation. This is also the case
in the present context and it is interesting to consider the effect of this energy scale
on the quasiparticle sector. I already argued that the quasiparticle-quasiparticle
interactions have to vanish in order for the Fermi-liquid to exist. The ‘screening’
processes, giving rise to the disappearance of the interactions, are in fact much easier
to understand for long range interactions than for short range interactions. The
reason is that the plasma frequency represents an energy scale and one can control
the low energy theory using w/w, as a small parameter. In contrast to the short
range case, the screening of the long range electron-electron interaction is already
accurately described on the present Gaussian level. However, Green’s functions are
needed and this will be discussed in more detail in the next section. On the other
hand, the essence of the screening mechanism can already be seen using the simple
device of an external test charge. We consider a (longitudinal) external potential
Wext(q,w), caused by an external charge density pe,(q,w),

Pext, ((77 w) = quezt((fa U)) (770)

In response to the presence of the test charge, the electron system will adjust its
charge distribution. The dielectric function £(§,w) is defined by the ratio of the
external potential to the total potential (4:(q,w)), which includes the contribution
of the electron system as well,

1

Prot(T, w) = m Pext (T, W) (7.71)

The total potential is ,
Prot (7, W) = Pext (T, w) + Vy(p(q, w)) (7.72)

(p(q,w)) is the induced charge density in the electron system. This is the charge den-
sity appearing in the definition of the charge susceptibility: x(q,w) = (p(q,w))/Pext(T, w)
(7.13). It follows that,

1 4re?
147 G 7.73
7 o x(q,w) (7.73)

Using the RPA form for x (7.49),

B Are? .
erpa(qiw) =1 — 7 Xo(q, w) (7.74)
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Recall figure 7.1; big peaks are expected in in x” centered at the plasma frequency and
this implies that ¥’ has to be negative when |w| < w, and therefore Re(1/e(q,w)) < 1
when w < w,. Hence, the real potential which is dressed (screened) by the electron
system will be smaller than the bare external potential ., when the energy is smaller
than the plasma frequency. We will find in the next section that this motive is also
responsible for the diminishing of the quasiparticle-quasiparticle interactions.

We can limit the discussion to the case w = 0 - little will change untill the energy
approaches the plasma frequency. This limit is of a direct empirical relevance, because
it adresses the penetration of a static electric field in a metal, as well as the screening
of the field of a charged impurity. The interest is in the static limit of (7.52) with
the Coulomb potential (7.65),

_ 1 gip 1 2 ‘1 +z ]
erpalq) = 1+ 3 & 1+ o (1 —2%)n F— (7.75)
. = q/2kr (7.76)

The so-called Thomas-Fermi wavenumber is defined by

,  6me’ng
qtr =
Ep

(7.77)

Let us first consider the long-wavelength limit, such that ¢ << 2kp. We specialize
on a point-like impurity with charge z. The screened impurity potential becomes,

4z
Pser(@y W) = 5—7 5 (7.78)
SCT ¢+ 5 Gy
This is nothing else than a Yukawa potential. Transforming to real space,
Pser(Tyw) = Z emarer/2 (7.79)
7

The impurity potential falls of exponentially in space with a characteristic length
scale ~ 1/grp, which is called the ‘metallic screening length’. This behaviour is
only correct at large length scales. For shorter lengths, one picks up in addition the
length scale ~ 1/2kp. By doing the integrals, one finds small amplitude oscillations,
superimposed on the decaying potential (7.78) with a wavelength 7/2kp: the Friedel
oscillations. The response of the electron system in the spin-sector is very similar to
the above charge response. The spin density induced in the system by a magnetic
impurity also shows these 2kp (‘RKKY’) oscillations. The difference is now that
the spin density of the unperturbed Fermi-liquid is zero, and therefore the induced
spin density changes sign repeatedly before it has decayed. As a consequence, the
magnetic interactions between different impurities can be both ferromagnetic and
anti-ferromagnetic, depending on their precise distance. When the impurities are
distributed randomly, the spin system becomes fully frustrated and this is the origin
of the spin-glass behaviour, as found in metals containing magnetic impurities.
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7.4 The fluctuations around the Fermi-liquid: kindergarten
Greens functions.

Up to this point we have dealt with the classical limit of the Fermi-liquid, having the
same status as the theory of the classical crystal with its classical lattice vibrations,
etcetera. The next step is to study the quantum order parameter fluctuations. In
view of the past experiences, we could argue that a Goldstone mode is present, which
can be quantized to yield an order parameter fluctuation which is expected to be
similar to the one in crystals: the Fermi-liquid can exist in d > 2. This is part of
the truth. However, it is not all: next to the collective modes, also the quasiparticle
excitations appear at low energies and it has to be checked if these do not give rise to
dangerous terms in the perturbation theory. These fermionic ‘modes’ or quasiparticles
render the Fermi-liquid to be a richer subject than the condensates of the previous
chapters..

What is the implication of the order parameter stability in the quasiparticle sector? I
argued that the discontinuity in (nz) is the measure of the order in the Fermi- hquld

and the discontinuity has to be finite. This implies for the limit w — 0 and k— kp:

(1) Fermionic quasiparticles have to be present carrying the quantum numbers
of the bare electrons (E, o, -€). The lowest lying states of the system with
one quasiparticle removed (or added) have o finite overlap with the states of
the system where a bare particle carrying the same quantum numbers has been
removed (added). This is a necessary condition to find the discontinuity. The
aforementioned overlap is called the quasi-particle pole strength, Zp.

(ii) The quasiparticles become infinitely long lived when w — 0. Otherwise, the dis-
continuity could not exist because the quasiparticles themselved are ill-defined.
This is equivalent to: the quasiparticle-quasiparticle interactions have to van-
ish if the excitation energy goes to zero. In addition, the quasiparticles should
decouple from the zero-sound mode/plasmon, but this is usually not a problem.

There is a proof available that the Fermi-liquid can ezist - it is unproven that the
Fermi-liquid has to exist. This proof is quite complex, and needs the full machinery
of diagrammatic perturbation theory which is beyond the scope of this text. At the
same time, Greens functions and diagrams do enrich your physical view on the world
and it is possible to learn some of the principles with relatively little effort. What
follows is optimized to help your physical intuition. Although some basic features
are shared with the standard diagrammatic perturbation theory, the latter is derived
in a different way. It takes more formal effort to derive the full size diagrams, with
the reward that the formalism is more efficient than the minimal version presented
here. When you plan to do calculations yourself, consult first the specialized books
like Mahan, AGD, and Negele and Orland.

The mathematical object ‘Greens function’ or ‘propagator’ plays a central role in the
formalism. The essence is that it is in more than one regard beneficial to attempt
to invert the Hamiltonian, instead of to diagonalize the Hamiltonian. This has a
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physical reason: the inverse of the Hamiltonian relates directly to the measurable
quantities introduced in section 7.1, the response- and spectral functions. There is
also a technical advantage. Perturbation theory is formulated in a more natural way
when the inverse of the Hamiltonian is asked for. As you will see in a moment, this
makes it possible to pursue the perturbation expansion up to infinite order with little
effort.

The empirical relevance of Greens functions follows directly from the work done in
section 7.1. Consider the dynamical form factor (7.7). From the Dirac relation (7.22)
it follows directly that,

S@) = (Ol [~ B, + Bl o) (7.80)
— L tim Im0); | 3 ) ——————(n] | p4l0) (7.81)
om0 Pq m nw—’in—ER—f-Eo Pa '

1 =
= lim Im(0]pzG (w — i1 + Eo) pg|0) (7.82)

Defining the so-called ‘resolvent’ operator,

6e) = L=l (7.83
1
z—H
Hence, the Hamiltonian has to be inverted in order to calculate the form factor! The
matrix elements of the resolvent operator with regard to one or the other prepared
state is ‘the’ Greens function. Also the susceptibility (7.19) can be written in a Greens
function form,

xX(7,w) = })1_1)1(1)(0|p;i (G‘(w +in+ Fo) + G(—w — in + Eo)) p7]0) (7.85)

(7.84)

The reactive part of x relates to the real part of the Greens function. Also the single
particle spectral function (7.8) can be written as the imaginary part of a Greens
function,

G1(k, z) = (0lcg, G (z + Eo)ck._[0) = (0lck. G(—z + Eo)cg,|0) (7.86)

The first term represents the unoccupied- and the second term the occupied states
(check the signs !). This ‘one particle Greens function’ plays a central role in Fermi-
liquid theory.

It is also easy to see why perturbation theory simplifies, using Greens functions. The

main advantage of diagrammatic perturbation theory is, that it becomes possible to

handle classes of perturbative processes up to infinite order. This is called ‘resum-

mation’. The key to this is the so-called Dyson equation. We assume a basis which

diagonalizes Hy and consider a perturbation H;. The diagonal resolvent is
& 1

o= T H, (7.87)
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By straightforward operator manipulation,

] |

G = s 7.88

7 — Hy — H, (7.88)

= G (7.89)
1-— Hng

= Go+ GoH\Go+ GoH,GoH\Go + -+ (7.90)

We derive in two lines a perturbative expansion for G which runs up to arbitrary
high order - ‘only’ the expectation values have to be calculated. (7.90) can also be
written in a recursive form,

G = Gy + GoH, G (7.91)

and this is the Dyson equation, the working horse of the formalism. It expresses that
a perturbation series like (7.90) can be summed up to infinite order by reformulating
it in the form of a self-consistency (recursive) equation: G is guessed and filled in on
the right hand side of (7.91), to calculate the left hand side, which is inserted on the
right hand side again, repeating this untill self consistency is reached. This is the
resummation principle, which can be regarded as a dynamical generalization of the
saddle-point equations encountered in mean-field theory.

The method is general and it applies as well to single particle problems, as to the
more difficult many particle problems. The formalism is especially suited to deal with
single particle #mpurity problems. A simple example is the Clogston-Wolft impurity
model,

Hy = ZCLCk (7.92)
k
1
H = Nzc,tcm (7.93)
kg

descibing a point scatterer (H;) at the origin, embedded in an electron gas (Hy, the
spin of the electrons is neglected). The interest is in the local impurity density of
states. This model can be diagonalized, and subsequently this density of states can be
calculated. This is, however, a rather lengthy calculation and using Greens functions
instead, it is a matter of a few lines. Define the Greens functions,

Gru(z) = <k|C:¥(z)|k'> (7.94)
Gr(2)dew = (k|Go(2)K) (7.95)
= z—le Ok ! (7.96)

and the impurity density of states is calculated from the imaginary part of (7.94) by,

1
Ape(w) = - 717135 ImGioe(w — in) (7.97)
1
Gloc(z) = N Z Gk’kl(z) (798)
ko
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because |Ri—o) = (1/v/N) ¥y |k). G is given in terms of the expectation value of
the Dyson equation (7.91),

|4
G (2) = GR(2)kp + Gi(2) 37 2 Crtaw (2) (7.99)
q
Because the interest is in (7.98) we sum both sides over k, k' to find
Gloc(2) = Gloe(2) + Gloe(2)V Groe(2) (7.100)
with
1

(7.101)

GY =

loc(z) ; z — €
having an imaginary part, corresponding with the density of states of the unperturbed
electron gas. Solving (7.100),

_ G?G(:(z)
1-VGY . (2)

loc

Gloc(2) (7.102)

The right hand side of this expression contains only known quantities and, together
with (7.97), the impurity density of states can be calculated.

Figure 7.7: the various ingredients (upper panel), needed to calculate the density of
states (lower panel) of the Clogston- Wolff impurity
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In the Greens function formalism, physics seems often to reduce to an excercise in
complex function theory and (7.102) is a typical example. To simplify matters, let us
assume that the density of states of the unperturbed electron gas corresponds with
a rectangular box with height p and upper/lower bound £W (2W is the bandwidth,
figure 7.7),

1

A (W) = = lim ImG} (w —1in) (7.103)
™

= pB(W — |w|) (7.104)

Using the Dirac relation (7.22), it follows directly that the real part of G° can be
expressed in terms of the imaginary part by'!,

A
ReG® (w) = P / du' e (7.105)
W+w
— 7.106
o) (7.106)

When is the imaginary part of the full Green’s function G,,. unequal to zero? This
we have seen before in the context of zero sound, (7.54-7.56) - this is not an accident,
as will become clear soon! The first possibility is that ImG?Y,, # 0: this means that
the band electrons have a finite probability to be present on the impurity site. In
terms of wavefunctions localized on the impurity site, one can consider this as the
impurity wave function leaking out into the remainder of space. Hence, the impurity
of states is always non-zero when the host density of states is non-zero. The second
possibility is that the demominator of (7.102) becomes zero, while ImGy = 0 - this
corresponds with an isolated pole, a delta function peak located outside the band
(recall the zero-sound pole). This corresponds with a state where the electron is
bound to the impurity. The condition for this to happen is,

W+w 1

7 w| =V (7.107)
This looks much like a weak-coupling saddle point equation. For arbitrary coupling,
this is most easily solved graphically. In figure 7.7, the real part of Gy is sketched
and the pole condition is met when this intersects with the straight line given by
1/pV. For a repulsive potential (V > 0) a bound state can be found above the top
of the band and for an attractive potential (V' < 0) the bound state will be found
below the bottom of the band. When the potential is large, the 1/pV line is close to
the x-axis and the intersection will occur for large positive or negative energy: the
impurity (anti) bound state will have a large (anti) binding energy. Reducing V, the
(anti) bound state will move in the direction of the bottom (top) of the band. The
specialty of this host density of states is, that the real part of the Greens function
is logarithmically divergent at the band edges, and regardless the smallness of the

In |

1 This is actually a general (Kramers-Kronig) relation between the real and imaginary parts of
Greens functions.
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interaction, a bound state will always exist! For very small pV' the binding energy has
a weak coupling form A ~ exp(—1/(pV)) - it turns out that when one casts mean field
calculations in the Greens function formalism, one finds precisely the same logarithm
in the real part of the appropriate Gy in nested problems. The logarithm in the real
part is caused by the discontinuity in the imaginary part of G°, because of (7.106).
Discontinuities in one particle density of states are only found in one dimensional
systems. In higher dimension, the density of states goes continuously to zero, and
the real part of GG is therefore finite everywhere. As a result, these weak-coupling
impurity bound states only occur in one dimension.

This is not yet the whole story. As can be seen from the figure, (7.107) can also be
satisfied when I'mG) is finite. When this is the case, the impurity density of states
will get enhanced at the energy where this happens (w,), and this tends to produce a
peak as well. The difference is that the peak now has a width ~ VImGy(w,). This is
a resonance (also called ‘virtual bound state’ in the impurity context): the electron
tends to localize in the neighbourhood of the impurity, but after a time ~ 1/VImGy
it leaves the impurity again. In the many-particle context, the same happens and the
width of the peak corresponds with a decay rate.

Summarizing, in this simple impurity example one obtains already a clear view on
some central aspects of the ‘Greens function search light’: by resummation, (7.100),
one is able to treat non-perturbative aspects of the problem (like bound states). Real
excitations are counted by the imaginary part of the Greens functions, and the real
part of the Greens function is keeping track of the virtual fluctuations. The real parts
of the zero-th order Greens functions relate to shifts of the energy levels, and are also
doing the hard work leading to bound states. The imaginary parts of those relate to
decay rates or, more generally, dissipation.

Let us return to the many-particle context. I just mentioned the striking mathemat-
ical similarity between the impurity problem and the RPA calculation of section 7.2.
This is no accident, as can be seen directly. We have only to realize that both x and
x" correspond with a sum of two Greens functions and the Dyson equation also holds
for a sum of Greens functions. (7.49) can be rewritten as,

X(@w) = x0(@w) + x0(T w)Vox(q, w) (7.108)
= xo(q,w) + x0(q, w)Voxo(q, w)
+ x0(q, ) Voxo(q w)Voxo (T, w) + - -+ (7.109)

and we directly recognize the perturbation series (7.90) and the resummed series
(7.91). In contrast to the impurity resummation (7.100), the resummation (7.108)
does not represent the exact solution. At the same time, we realize that the zero-
sound pole does not show up in any finite order in the resummation (7.109): only if
this is summed up to infinite order, one recovers (7.108) and (7.49) which do describe
zero-sound. I stressed that zero-sound is not present in the non-interacting electron
gas and only exists in the Fermi-liquid condensate, which is qualitatively different
from the electron gas. Using equations of motions, zero-sound showed up because of
our insistence on the existence of the vacuum amplitude. (7.108) and (7.109) exhibit
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the structure of the perturbation theory around the non-interacting electron-gas.
Because the summation has to be carried through up to infinite order, the Fermi-
liquid cannot be reached by any finite order perturbation theory, starting from the
non-interacting limit. This infinity is the cause for the qualitatively different nature
of the Fermi-liquid.

Despite the fact that the RPA resummation takes into account infinite order cor-
rections, it includes only a very small subset of all possible perturbative corrections.
The reason that RPA is nevertheless qualitatively correct is, that it keeps track of
the processes which are ‘dangerous’ for the non-interacting electron gas, namely those
which are responsible for the rigidity of the Fermi-surface. The administration of all
possible perturbative processes is a task of great complexity. To help the mind to keep
track of this accountancy problem, diagrams are introduced. Diagrams are nothing
else than a pictorial representation of expansions like (7.90), helping the mind to sort
the information. Pictures are more ergonomic than integrals! Crudely speaking, the
recipy is as follows!?: the electrons (fermions) are coded by full lines, with an arrow
pointing from left to right. The holes are also represented by a full line, but with
an arrow pointing from the right to the left (‘time runs from left to right’: do not
take this too litteral !). The (instanteneous) Coulomb interaction is represented by
a vertical dashed line. The external field is already fully integrated out (section 7.1)
and is indicated with a cross: on ‘time —oo’ an electron-hole pair is created at the
cross and this pair has to be annihilated at a second cross located at ‘time +o0’.
Many things can happen in between to these two ‘times’, which are in first instance
unknown, and this we indicate with a hatched area. The diagram corresponding with
the susceptibility x is indicated in figure 7.8.

o
7

Figure 7.8

This becomes simple in the non-interacting limit. Nothing can happen with the
electron-hole pair and the hatched region disappears. xo now corresponds with the
‘bare bubble’ (or ‘loop’), figure 7.9. The diagram for the Coulomb interaction V; was
already introduced in chapter 2, and is shown once more in figure 7.10. It is directly
seen that the graphical representation of the RPA expansion (7.109) becomes the sum
of bubble ‘chains’, as indicated in figure 7.11. For obvious reasons, RPA is also called
‘the bare bubble resummation’. The diagram pictures offer a convenient vocabulary to

12In order to get the prefactors right, related to the multiplicities of the various terms, one has
to work onself through the perturbation theory more carefully. 1 refer to the book by Mahan for a
transparent derivation of the Feyman rules. This book contains also a useful discussion of the finite
temperature (Matsubara) formalism.
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Figure 7.9
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Figure 7.10

discuss further improvements. For instance, from the picture one infers that in RPA it
is assumed that the bubbles involve bare (non-interacting) electrons. This is actually
quite unreasonable, because I argued before that also the fermions are affected by
the interactions. Instead of thinking electrons, one should think quasiparticles which
are well defined only because of the condensate. Hence, one would like to replace
the bare fermion lines in figure 7.11 by something else which relates to the proper
objects, and it could be that one again needs resummations to get these objects right.
Fot this purpose we have to investigate the single particle Greens function G, (7.86),
relating to the spectral function of the electrons themselves.

The specialty of the Fermi-liquid is that the quasiparticles still carry the same
quantum-numbers as the bare electrons and one can continue from the latter to
the former by perturbation theory: the rigidity of the Fermi-liquid is consequential
only in the sector of collective excitations (zero-sound etcetera). I already argued
that this has to be the case in order for the discontinuity in the single particle mo-
mentum to exist: the quasiparticles have to be (‘non-exact’) eigenstates of the single
particle Fermi momentum kp. Assuming that the discontinuity exist, a non-trivial
consequence follows for the form of G;. As long as the discontinuity is finite, Gy can
be written in the form,

1
w—Eg— Sk, w)

Gi(k,w) = (7.110)
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ej is the band kinetic energy of the non-interacting electron. The so-called seli-energy
3} is a complex function,

Sk, w) = ¥ (k,w) +i2" (k,w) (7.111)

which collects all the effects of the interactions. X itself is obtained by resumming the
perturbation expansion for G in a particular way (¥ is in the denominator !), and
this defines a perturbation expansion for ¥ as well. The expansion for the self-energy
is truely perturbative in a Fermi-liquid and can be carried out order by order. Let
us consider one additional electron with k& > kp, added to the Fermi-liquid (except
for a nasty minus sign, the argument is the same for an added hole). We can define
a classical (single determinant) state which now relates to an excited state of the
Fermi-liquid with one extra electron at k and spin o,

10%; ko) = c~ Hif Cpi|vac > (7.112)

Recall the definition of the single particle Greens function (7.86). The first term on
the right hand side describes the unoccupied states ("G7”), and assuming that the
fully renormalized Fermi-liquid condensate (|®¢;)) exists,

1
Gy (k,2) = (@Cl|c,w 7 ,w|q)6‘l> (7.113)
counting from the ground state energy. Because |<P°CZ;EU) = C,T;(,|(I)%l> and using
1 =33, |9 ka)@%z, kl
G7 (k, 2) = (@] Por) (@ ko | ———|8; ko) (7.114)

Clearly, the Greens function can only relate to the bare electrons, when the overlap
factor [(®%,|®Pcy)|? is finite - if this would not be the case, it would become impossible
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to find back single electron quantum numbers in the system. By definition, this
overlap factor is finite in the Fermi-liquid (height of the discontinuity). However,
this overlap factor would become precisely zero in a non-Fermi liquid and in such
a system the notion of electron would loose its meaning, which is actually the case
in one dimensional metals. It should not come as a surprise that in such cases the
self-energy expansion itself becomes singular, as will be discussed later on.

It is now demanded that,

> . 1
Z— &g — Ered(k: Z)

(D%y; ka| |cI>Cl, (7.115)
The self-energy Y,.4 is the ‘reducible’ self-energy which is different from the ‘irre-
ducible’ self-energy ¥ appearing in (7.110). The Hilbert space is explored by letting
H, operate repeatedly on (7.112). For instance, doing this once we obtain states
(dropping the label ®%,),

H, |k> ~ CL’—qc’C'lec+q|(I)%’l)
1) (7.116)

The electron scatters off the Fermi-sea, liberating an electron-hole pair. Letting
H, operate twice, one finds two electron-hole pairs, etcetera. Later on this will
be disentangled using diagrams, and for the time being we only need an abstract
definition for the states and matrix elements in this basis,

1

(=) = Gl
6lm
= — 7.117
= (7.117)
(|Hilm) = Vim (7.118)

& is the sum of all one-particle energies of the excited electrons and holes. Let us
now expand the left hand side of (7.115) using the Dyson equation (7.91), extracting
every time the term from the summation which leads back to the initial state |k).
After one iteration,

(k|G (2)|k) = G(2) + GRS (KIG(2)[k) + Gi(2) #Zk Va(llG(2)[k)  (7.119)

and we read off the first order contribution to X,.q,
M = (k|H'k) (7.120)

corresponding with the expectation value of the interaction in the non-interacting
vacuum. This is repeated, to find up to second order,

(kIG()k) = Gi(z) +Gz) (S (k) + =Dk, 2)) (k|G (2)[k)
+GO z thGO ) ur<l’|é(z)|k) (7121)

l Ak
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defining the second order contribution to the self-energy,
5 =S VG (2) Vi (7.122)
Ik
Carrying on, a third order contribution is found
20 = 3 VuGl(2)VuGi (2) Vi (7.123)
LAk

and so on. By induction, one finds the self-energy resummation up to infinite order,

(k; 0|G(2)[k;0) = G}(2) + GR(2)Trealk, 2)(K; 0|G(2)|K; 0) (7.124)
1
= e (7.125)
with
Srealk, 2) = i >O(k, 2) (7.126)

while the i-th order self-energy is given by,

Z(i)(kv Z) = Z Vle?(z)VlllG?l (z) o 'G?,-_l Wi—lk (7'127)
Lk
containing in total ¢ interaction matrix elements. One already anticipates that cal-
culating an arbitrary high order contribution to the self-energy is a daunting task:
it might well involve an integral over ~ ¢ — 1 internal momenta. Fortunately, this
self-energy expansion tends to converge rather rapidly, at least in ‘good’ Fermi-liquids
characterized by large discontinuities.

o ®

Figure 7.12: illustration of the meaning of the self-energy 3. The real part shifts the
bare state, while the imaginary part gives rise to a lifetime broadening.

The self-energy (or ‘complex mass’ as it is called in relativistic field theory) is a very
useful concept. Let us consider a simple example. If the interactions are weak and
we are sure that the Fermi-liquid exists, we might stop the expansion of ¥ at second
order. The first order contribution (7.120) is not so interesting; it just amounts to a
number shifting the energy of the ‘quasiparticle pole’: e; — e + ¥, The second
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order contribution (7.120) is more interesting: it is an integral over two interaction
matrix elements and the Greens function describing the scattered electron and the
excited electron hole pair GP(z) ~ 1/(z — &1 + &3 — €3), having an imaginary part
ImGY ~ §(w — &1 + €9 — €3). Hence, because we have to integrate over the internal
momenta, the imaginary part of £(2) will correspond with a three-particle density of
states, weighted by the interaction matrix elements: ¥"(w) ~ V?p(w). A detailed
calculation of this integral is not straightforward and this will be kept for later. All
what we need is that p(w) is a smooth function. The real part of ¥ can again be
obtained using the Kramers-Kronig relation (compare with 7.106). Summarizing,

Y(k,w) = Y(kw)+iZ"(kw)
k) = Vi)

2"k, w')
D(kw) = P [df 7.128
(k) oot (7128)
The real interest is in the spectral function of the electron,
1
Ay(k,w) = —ImGy(k,w) (7.129)
s
1 Yk, w)

= T Tk W) 1 (W) ek
The condition for finding a pole at E} is that Ey = e, + 3'(k, Ex): the energy of the
electron state changes due to the interaction and this is called ‘mass-renormalization’.
Notice that one has to solve an implicit equation to find Ey. This reflects the resum-
mation behind the self-energy, and although this does not produce novel behaviour,
it allows for large quantitative changes. At the same time, ¥"(k, Ey) # 0 always in
the present context, and as long as p is smoothly varying on the scale of Ej, (7.130)
will be close to a Lorentzian peak: the imaginary part of the self-energy represents
the decay rate (or inverse life time) of the electron-like state at Ej (Figure 7.12).
Hence, the self-energy is a powerful mathematical object which allows for a unified
description of both the ’reactive’ (energy shifts) and ‘dissipative’ (lifetime broaden-
ings) aspects of particle-like excitations. The concept of self-energy is not restricted
to fermionic excitations. One can as well define self-energies for bosonic excitations
like phonons, magnons, etcetera, with imaginary parts describing the decay rates
(e.g., section 4.4), while the real part gives rise to for instance a renormalization of
the velocities.

— HBxcercise 7.12

Let us now consider the self-energy expansion for the electron in a Fermi-liquid in
more detail. The first order term, (7.120), is not particularly interesting. Writing it
explicitely in terms of the basis (7.112) and the interaction (7.93),

=0 (k ZV* BLy; klpap—g| @y k) (7.131)

This contribution is w independent and amounts to the expectation value of the
interaction with regard to zero-th order state. Since the expectation value has to be

233




calculated with regard to all electrons, the extra electron at k can be neglected,

E(l) =W _ZV (Pl pgo-i1®en) (7.132)

This is nothing else than the expectation value of the interaction Hamiltonian with
regard to the condensate state. We should now recall section 1.2: the energy of
the classical condensate itself (Fp) is given by the expectation value of the whole

Hamiltonian with respect to this state: Ey = ZZF ez + (B X Vapar-g|®e,). All
what & does, is to let the electron addition spectrum start at the thermodynamic

potential of the classical state, which is different from the thermodynamic potential
of the non-interacting system.

Y™ thus coincidizes with the interaction correction to the classical vacuum energy,
and it is interesting to consider this contribution in more detail. The only averages
which exists in the Fermi liquid are the momentum distributions (n;) = H(k kF)
The interaction term can be decoupled in two ways. The first one is straightforward
(the ‘Hartree’ contribution),

(0; 0] Z Vapep—ql0;0) = quong (7.133)
q

where nyg is the uniform charge density ~ Y z(ng) = > 0(k — kr). This is equiva-
lent to the charge density dependency of the mean-field energy as we encountered in
section (5.5). In the jellium, this term is supposed to be cancelled precisely by the
interaction with the positive background charge. This is different in an inhomoge-
neous electron gas where these terms in general lead to a smoothing of the charge
distribution: it removes self-consistently charge from high density regions where an
excess Hartree energy has to be paid, and moves this charge to regions of low charge
density. Together with a special potential, approximating the effects of exchange and
correlation in terms of a function depending on the local charge density as will be
discussed in a moment, this is the way the interactions are treated in the standard ‘lo-
cal density approximation’ band structure theory. Next to (7.133), there is a second
way to decouple (7.132) which should therefore also be taken into account. Consider
o = o', the electrons which interact have the same spin,

(D] Z czackﬂacz'ack’—qam)a) = (3¢ Z Cltack’—qcrcllackﬂolq)ocﬂ
k:)k:/)q’g k;’kl7q70-
= —@gﬂ Z ”ka”k+qolq)%z>
k,qo

= =3 Vi g0k - kr)0(F—kr) (7.134)

using k = k' — ¢ to get from he first to the second line, and p = k + ¢ to recognize
the third line in the second line. This is called a Fock term, and it reflects that the
electrons with parallel spins in |®Z,;) tend to avoid each other because of the Pauli
principle, thereby paying less interaction energy.
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Let us return to the self-energy expansion. The second order contribution (7.122) is
far more interesting. To keep track of the meaning of the various processes described
by this term, it becomes now very convenient to do the accountancy using diagrams.
Following the diagram rules, the defining equation for the self-energy (7.124) has the
graphical representation as indicated in figure 7.13. The double line now represents
the full Greens function GG; which represents the ‘renormalized’ electron ‘dressed up’
with the self-energy: its energy has changed, it has acquired a life-time, etcetera.

(a) (b)

N
7~
Figure 7.14

Let us now consider the second order self-energy. Given that the interaction term acts
twice, and using the interaction graph we deduce the two possibilities shown in figure
7.14. The diagram for (% represents the process we already discussed: the external
electron scatters against the Fermi-sea, exciting an electron-hole pair. This diagram
therefore describes the dressing of the electron, giving rise to a finite life-time, energy
shift, etcetera. The diagram for £(?® describes actually the renormalization of the
vacuum: the external electron does not interact at all with the Fermi-sea. Instead
two electron-hole pairs are excited because of the interaction acting on the Fermi-
sea itself! Accordingly, diagrams like the one for £(?) with the external electron-
line omitted, are called ‘vacuum polarization diagrams’ and summing these together
amounts to bringing the classical state |®%,) to the dressed vacuum |®¢;). At the
same time, it is obvious that the vacuum polarization diagrams have nothing to do
with the properties of the extra electron. Although it is not easy to see from the
present formalism, it turns out that all disconnected diagrams (the ones containing
vacuum polarization diagrams) as show up in the self-energy expansion, add up to
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precisely cancel the overlap factor [(®%,|®¢;)|? in (7.114). Hence, when we neglect
all disconnected diagrams we can neglect this overlap factor as well. One can now
define an ‘irreducible’ (or ‘proper’) self-energy ¥ = E,eq — (disconnected diagrams)
and this is the self-energy appearing in (7.110), describing exclusively the fate of the
extra electron.

Although there are many more diagrams to be discussed, the RPA resummation
and the concept of self-energy actually suffice to discuss a class of theories which are
technically managable while they work quite well at the same time. The basic strategy
is to search for particular diagrams which show up in all orders of perturbation theory,
while they can be resummed using the Dyson equation. At the same time, one has to
neglect an infinity of other diagrams and picking the important diagrams is a matter
of physical intuition, as well as opportunism: generic high order diagrams correspond
with high dimensional integrals which cannot be solved by the fastest computer.
Fortunately, these diagrams have the habit to be quite unimportant as long as the
vacuum is the proper (classical) one. Let me illustrate this with the so-called ‘GW’
approximation, which turns out to yield a rather accurate quantitative description of
‘simple’ electron systems, like weakly correlated metals and semiconductors. At the
same time, GW offers a rational for the success of the local density approximation
underlying band-structure theory. In essence, GW amounts to saying that only the
bubble summation (RPA, fig. 7.11) and the second order irreducible diagram ¥(20)
(fig. 7.14) really matter as building blocks.

Figure 7.15

It starts out with the observation that the bubble appearing in the second order
self-energy diagram fig. 7.14a also shows up as the basic building block of the RPA
resummation fig. 7.11. Expanding the electron self-energy up to higher order, we
will find among many other diagrams the ones shown in figure 7.15. For a good
reason, I also included the diagram for the first order Hartree correction. Hence, this
is like the RPA resummation, except that the bubble ‘chains’ are now connected to
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the external fermion line. Since we learned that bubbles have to be resummed to
produce the correct physics, we expect that this resummation is also important for
the electron self-energy. Using (7.73) and (7.108),

Vz

eRPA(F, w) =V + Vx (4, w) Vg + V(4 w)Vax (@ w) Vg + - (7.135)

The screened interaction V/e becomes in RPA the diagram series as indicated in
figure 7.16.
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Figure 7.17

Because of the frequency dependence of e®F4 | the screened interaction (double dashed
line, figure 7.16) is now time dependent and it is no longer necessary to draw it straight
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upwards. Alternatively, one can look at the screened interaction as being a boson
like excitation. Comparing figure 7.15 and figure 7.16 we see directly that the RPA-
level self-energy can be represented by the simple diagram shown in figure 7.17. In
algebraic form,

7 _ V;_; 0/7) —

S rpa(k,w) ij / D s GO = G = ) (7.136)
and this is the typical form of a lowest order electron self-energy related to the
exchange of a boson. For instance, the lowest order electron self-energy coming from
the interactions with phonons is given by glueing together to elementary diagrams
of the type figure 4.4. This yields figure 7.18, with the doubly dashed line replaced
by the wiggly phonon line. This corresponds with a convolution type integral as in

(7.136), with ETWEL("E*"ZT) replaced by the ¢ and w dependent phonon Greens function.

\.
o
Figure 7.18

What is the physical meaning of figure 7.17/(7.136)7 It proves that the electron only
knows about the screened Coulomb interaction! Recalling the discussion in the pre-
vious section, the effective low energy theory which can be extracted by analyzing
(7.110), (7.73) and (7.136) for low energies is characterized by much smaller interac-
tions than the theory in terms of the bare electrons. This gives a first glimpse on the
renormalization principle which makes it possible for the Fermi-liquid to exist: the
coupling strength itself is a function of energy. Starting with a rather strongly in-
teracting system at high energies, the interaction strength decreases with decreasing
energy, to vanish alltogether in the infrared where the effective system becomes ‘free’
(non-interacting).

There is more to be dressed up. Up to now we have used the bare fermion lines to
calculate the bubble. However, the bare fermions donot exist, and we better dress up
these bubble fermions with self-energy diagrams as well: figure 7.19. Hence, it is easy
to improve the RPA by using the full electron Greens functions instead of the bare
fermion propagators in the calculation of x°. Finally, we should also dress up the
remaining internal fermion line in the self-energy diagram, figure 7.20: the electron
itself is also scattered into a dressed state after the exchange with a (dressed) RPA
charge fluctuation.

This series of resummations defines the GW approximation. It corresponds with the
following system of equations,
1

w—Ep— EGW(E, w)

Ggw(,lg, w) =
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Sowlkw) = X [dAtGaw(F ~ g0~ )
7 eaw(q, A)
eaw(@, ) = 1= Vixew(qw) (7.137)

where the imaginary part of x%, relates to the density of states of fully dressed
particle-hole excitations, which can be calculated from Ggw. It is called GW, be-
cause the self-energy has the form ¥ ~ GW, where W is the screened interaction and
G the dressed Greens function. This system of non-linear equations can be solved
numerically and it turns out to yield a rather accurate description for the jellium.
In addition it can be generalized to apply to inhomogeneous electron systems as
well. (7.137) takes now a matrix form, because the equations become non-diagonal
in k space: in analogy to the scattering of independent electrons against a periodic
potential, points in k space displaced by reciprocal lattice vectors K start to com-
municate with each other. For the simplest realistic electron systems, this problem
can be approximately solved, and it turns out to yield a near to ezxact description of
the electronic structure of for instance silicon!3. These results give the best rational
available for the succes of the local density approximation (LDA), commonly used
in band structure calculation to treat the interaction effects. LDA has a far simpler

13See, e.g., M. S. Hybertsen and S. G. Louie, Phys. Rev. B34, 5390 (1986).
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structure than GW: it is a simple mean-field theory with an adjusted relationship
between the vacuum expectation values (charge densities) and mean-field potentials.
It turns out, that this LDA ‘exchange-correlation’ potential can be understood as the

static w — 0 and local (2(E, k') — 6(k — E')2(k)) limit of the GW self-energy, which
suffices when the system is not too inhomogeneous!*.
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Figure 7.21

Despite the GW resummations, there are still infinities of diagrams which are ne-
glected. It can be rigorously shown that all the neglected processes act to renormalize
the interaction points (‘vertices’) where the Greens function lines connect. These are
called vertex corrections and are usually much harder to calculate and to resum. GW
is best characterized as the theory of interacting fermions under the ‘complete neglect
of vertex corrections’. In the case of GW, this is an uncontrollable approximation and
it is a matter of trial and error to find out if it makes any sense. This is different in
the context of electron-phonon coupling in metals, where it can be proven (Migdal’s
theorem) that the vertex corrections start to contribute for the first time in the order
wg/Ep. Because the ratio of the phonon frequency and the Fermi energy is a very
small number, one can neglect the vertex corrections safely, also in the context of the
quantitative theory. In diagrams, the structure of the very successful Migdal theory
for the electron-phonon coupling is indicated in figure 7.21. Notice that the phonon-
self energy (II) is the dressed version of the second order diagram, describing the

14 Quite often, LDA is sold by referral to the (in itself significant) density functional theorems by
Hohenberg, Kohn and Sham. I find these rationalizations to belong to the domain of scientific myth.
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decay of a phonon in an electron-hole pair. This theory is straightforwardly extended
to include a superconducting condensate as well, and this is the ‘strong coupling’
or ‘Eliashberg’ theory for superconducivity, which is very accurate even when the
electron-phonon coupling becomes large.

Despite their quantitative accuracy, the above ‘pragmatic’ theories do not show any
light on the question of principle: does the Fermi-liquid exist? At the end, an infinity
of diagrams has been neglected and only one of those has to be singular in order
to render the Fermi-liquid condensate unstable. The structure of the perturbation
theory around the Fermi-liquid can be further analyzed, and it turns out that one
can actually prove that the Fermi liquid can exist when the dimensionality of the
system d > 2. More specifically, it can be shown that the Fermi liquid is internally
consistent: the perturbation theory around the Fermi liquid is well behaved in all
orders. Notice that this does not imply that the Fermi-liquid has to exist: the
proof amounts to saying that the fully renormalized Fermi-liquid corresponds with a
minimum of energy and this is not necessarily the global minimum. The full argument
is far too complicated to be presented here, and needs the full machinery of field-
theory style perturbation theory: I refer the reader to the specialized books'. A
central piece in this proof is the stability criterium itself: what question should we
ask in order to find out whether or not the Fermi-liquid survives?

The self-energy is the central quantity. In the context of crystals we started out,
assuming that the Taylor expansion (4.15) exists, which was trivially the case in the
classical limit, but not necessarily so in the quantum system (the one dimensional
‘crystal’, section 4.6). In the present context, the existence of the Fermi-liquid as a
stable state depends on the analytic character of the self-energy. We have to demand
that the imaginary part of ¥ can be written as a power series in w which starts with
a quadratic contribution,

SE,w) =Y an(k)w" (7.138)
n=2 i

In the Fermi-liquid X" has to vanish at the Fermi-energy, because otherwise the
discontinuity would be smoothed out, because of the fuzziness of the quasiparticles.
This means that the fermion states at Er and kp live for an infinite time, which can
only be the case when these fermions are non-interacting. In addition, we assume
that ©" is a non-singular function of k. When £” is of the form (7.138) it follows
from the Kramers-Kronig relation that all derivatives of ¥ exist. This implies that
the rgal part of the self energy can be written as a Taylor expansion around w = 0
and k = kp,

. o 6% (ky,w) 6% (k, 0) B
Yk,w) = E(kp,0)+< s )wzow+<—~—5jrg k_kF(k kr)
5221(khw) 2
+( S )w:Ow 4. (7.139)

15Especially ‘AGD’ has a reputation to loose in this regard.
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(7.139) is the actual stability criterion for the Fermi-liquid: only when ¥’ can be writ-
ten as this Taylor series, the Fermi-liquid exists, as we will see in a moment. Notice
that ¥ is finite on the Fermi-surface, in contrast to X" (because of the Kramers-
Kronig relation, ¥'(kr,0) ~ — [dw'S"(kp,w’)/w’ # 0 and ¥'(kp,0) redefines the
thermodynamic potential). Notice also that the first derivative of ¥’ to w is always
negative,

55 (kw)) L i 52” k w)
(7&) ) - P/dw <0 (7.140)
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Figure 7.22: the consequences for the (unoccupied part) of the single particle spectral
function, implied by the analytic structure (7.138,7.139) of the self-energy.

Assuming that the self-energy can be written as (7.138,7.139), interesting statements
can be made, regarding the nature of the one particle spectral function: this is the
elegant core of the argument. G, is divided in a part describing the w — 0 limit of
A; = ImG, (the quasiparticle part) and the remainder which does not contribute
when the energy is sufficiently low (ImGineon = 0 when w — 0, the ”incoherent”
part).

1

Gk, w) = z 7.141
e w— &g — B(k,w) (7.141)
_ 1
wTEk T (%)wzo = (%“i)k:kp‘ (k — kp) — iaz(k)w?
+Gincon(k, w) (7.142)

This can also be written as (5 — %2(k — kp) when k — k),

Z

2 + Gincon(k, 7.143
0= B (k= kr) — i, () (k) (7:143)

Gl(lﬁ, (U) =
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with
1

Zy = ———— (7.144)
(3
1- (W)w:(]
. 1 1
my = s 1 (7.145)
Zkﬁ(ﬁ)k:kp—i_ﬁ
k
i w) = “ék)wg (7.146)

Because the k dependence is in many cases quite weak, it is often neglected allto-
gether,

Z

G- (k — Gincon(k, 7.147
1( ,CL))) w—ﬁ%(k—kF)—lT_l((U) + h( w) ( )

1
g = — (7.148)

5y

1 o (m>w—0
m* 1

W) = %wQ (7.150)

This is a very important result. It links the analytical structure of the self-energy
to the following physical consequences: When the imaginary part of the self-energy
can be written as the power series (7.188), it follows that the low energy regime of
the fermionic excitation spectrum is completely defined in terms of fermions with a
mass m* which do not interact, and which are in other regards identical to the bare
electronic degrees of freedom. This can be inferred directly from the one particle
spectral function A;, figure 7.22. Momenta close to kr are considered and the grey
lines indicate where the poles would be located when the electrons would be truely
non-interacting. The full spectral function is characterized by the incoherent part
(dashed lines) and the quasiparticle part dominating the low energy regime (full lines),
corresponding with a resonance. The quasiparticle has the following properties:

(i) For every non-interacting electron state there is exactly one quasiparticle state
(see figure 7.22). This means that there are precisely as many quasiparticles
as there would be bare fermions when the bare particles would not have inter-
acted. There is a one-to-one correspondence between the interacting- and non
interacting systems. This has (among others) the consequence that the volume
in k space enclosed by the Fermi-surface is the same in the interacting- and
non-interacting systems (Luttinger’s theorem).

(ii) The quasiparticle peak is not a sharp state away from kp. At any finite energy
it has a width (or inverse lifetime) which increases asymptotically as 1/7, ~
S'"(Ey, k) ~ FE% where Ey is the quasiparticle energy. At the Fermi-energy,
the lifetime becomes infinite and the quasiparticles become truely independent,
sharply defined excitations.
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(iii) Because 0%'/dw < 0 (7.140), Z < 1 (7.148). The overall weight of the quasi-
particle resonance is Z and this is always a fraction of the weight of the free
state. 7 is called the ‘quasiparticle pole strength’ and it expresses the overlap
between the quasiparticle and the non-interacting electron. Notice that the re-
mainder of the weight in A; disappears in the incoherent continuum at higher
energies. Z actually corresponds precisely with the overlap A? between the sin-
gle determinant state and the fully renormalized vacuum as defined by (7.32):
only the quasiparticles are present at Fr and they are therefore responsible for
the discontinuity. Hence, as long as Z is finite, the classical state dictates the
properties and the system is a Fermi-liquid. The stability of the Fermi liquid is
therefore controlled by the analytical structure of the one particle self-energy.

(iv) Although there is a one-to-one correspondence between the non-interacting elec-
trons and the quasiparticles, the quasiparticle energy is different from the kinetic
energy of the free electron. The dispersions can always be linearized close to
Er and because of the correspondence principle, the energy differences can be
completely absorbed in a redefinition of the mass, (7.147): the quasiparticle
mass m* is always larger than the bare electron mass. The highlight, (7.149):
the mass enhancement is inversely proportional to the pole strength, and the
mass of the quasiparticle is a direct measure of the magnitude of the Fermi lig-
uid order parameter. Hence, in a heavy fermion system, the quasiparticle mass
is enhanced by three orders of magnitude, and this implies that the weight of
the classical state in the true ground state is only 1/1000 - a reason to find
heavy fermion systems interesting.

It remains to be demonstrated that the imaginary part of the self-energy has the
analytic structure (7.138). In fact, this can be checked directly by experiment. The
simplest way is to consider the DC resistivity. According to semiclassical transport
theory, the resistivity is directly proportional to the inverse of the transport life-time
p ~ 1/7, and, taking some care, the transport life-time can be associated with the
single particle life time, such that p ~ X"(w = 0,T'). At finite temperatures and zero
energy, one can simply exchange w and T in the expressions for X, and one expects
p ~ T?: this is the universal behaviour of the DC resistivity at low temperatures in
normal metals. When this is not observed, as for instance in high 7, superconductors
(p ~ T from 10 to 1000 K), it is considered as evidence for the system being a
non-Fermi liquid.

The existence proof for the Fermi-liquid actually amounts to the demonstration that
the full perturbation expansion (including all diagrams) produces the series expan-
sion (7.138) for the imaginary part of the self-energy. The actual proof is quite
complicated!®, but the physical essence is not hard to understand: because of the
Pauli exclusion principle, severe kinematic constraints (energy- and momentum con-
servation) are present for the production of real excitations, needed as a decay channel
for the quasiparticle. Moreover, these constraints become more severe when one con-
siders diagrams of increasing complexity. As a consequence, the asymptotic behaviour

16see J. M. Luttinger, Phys. Rev. 121, 942 (1961).
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of £ (counting the real excitations) is completely dominated by the lowest order dia-
grams. The most dangerous contribution is actually coming from the familiar bubble
diagram, figure 7.23.

I

™~
-~
Figure 7.23

Because only quasiparticles exist as real excitations in the w — 0 limit, the lines
in the diagram now refer to the fully dressed quasiparticles, interacting via screened
interactions. The calculation of the imaginary part is not different from the calcu-
lation of the phonon life-time, considered in section 4.4, except that we now have
to count fermions. The effective interaction is short ranged and we can neglect its
momentum dependence alltogether. According to the golden rule, we have to deter-
mine the probability that the test quasiparticle with momentum l:c:l > kp and energy
E, = kp(ky — kp)/m* decays in a quasiparticle with momentum k4 > kr and energy
E,, thereby exciting a quasihole (EQ < kg, Ey) - quasiparticle (l_{o, > kp, F3) excitation
(figure 7.25). We infer directly that the test particle (‘1) cannot decay when it is on
the Fermi-surface, and its lifetime becomes infinite. We learned, however, that this
is a necessary but insufficient condition for the existence of the Fermi-liquid. We also
have to know how X" approaches zero. We have only to account for the kinematics,

Fi+ky = ks + kg (7.151)
E1 + E2 == E3 + E4 (7152)

Initially we have the test quasiparticle at E; and the quasihole-to-be at Fs, while
the final state consists of two quasiparticles outside the Fermi sea, at F3 and FEj.
Momentum conservation (7.151) implies, that the center of mass momentum of the
initial pair of quasiparticles has to be the same as that of the final pair of quasiparti-
cles. This implies that the two final state quasiparticles (‘2 and ‘4’) have to lie on a
sphere in k space centered around the center of mass momentum of the initial state
pair (figure 7.24b).

In addition, it is immediately clear that particle 2 has to be within a shell ~ E) - Ep =
w from the fermi-energy in order for the conservation laws to be satisfied (figure
7.24a). The density of states can be taken to be constant (Np) and the number of
states for particle 2 is therefore ~ Nyw. The final state pair ‘3’ and ‘4’ can still be
freely choosen except that the momentum of ‘3’ is fixed when a momentum for ‘4’
is choosen, and vice versa (figure 7.24b). In addition, both must lie within a shell w
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Figure 7.24: consequences of energy- (a) and momentum conservation (b) for the
lowest order decay process of the quasiparticle (figure 7.23)

from Ep (figure 7.24a), and the total number of final states is therefore ~ Nyw as
well. Because ‘3’ together with ‘4’ can be choosen independently from ‘2’; we find

Yo (k,w) ~ aw® (7.153)

Hence, the most ‘dangerous’ decay process contributes precisely the lowest allowed
power to the expansion for X".

The above excercise in kinematics is valid in three dimensions. This does not change
in two dimensions, but it works really different in one dimension. We already an-
ticipate difficulties because of the divergencies expected in the zero sound channel.
Also in the fermionic channel the perturbation theory gets out of hand. One finds
that the leading (bubble) order contribution to ¥"(k,w) ~ w. This implies that the
full self-energy behaves as S(k,w) ~ wn(iw) such that ¥'(k,w) ~ wln |w|. It follows
directly that 0%'/éw ~ Inw and the first derivative of ¥’ at w = 0 diverges logarith-
mically. Therefore, the effective mass diverges as wel, while the pole strength goes
to zero. As the other classical states, the Fermi-liquid cannot exist in one dimension,
and to find this out one can as well look at the fermions.

I already hinted at the state which is realized instead: the Luttinger liquid. Interest-
ingly, in this state it is not possible to identify fermions as fundamental excitations,
although the collective modes still exist in the sense of the floating solid (section
4.6). The physical picture is that the electron decays into a charge- and a spin mode
which propagate with different velocities. Hence, they can never find back each other
to recombine into the fermion, and in this way the fermion gets ‘lost’ in the sea of
fluctuating charge- and spin modes. Intellects in a one dimensional universe would
not worry about fermions!
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7.5 Excercises

7.1 Consider the nearest-neighbor tight binding model in d = 1 and assume that
the system is half filled. Sketch Ag,(w) for k = 0,7/4,7/2,3n/4 and 7.

7.2 Derive (7.16) from (7.9), (7.14) and (7.15).
7.3 Derive (7.17) and (7.19) from (7.10-7.16).

7.4 (7.22) is equivalent to the so-called Kramers-Kronig relations connecting the
real and imaginary part of response functions. Consider the analytic continua-
tion of the susceptibility x(z), with z = &' + ilmz.

a. Argue that x is analytic in the upper half-plane. What is the relationship
with causality?
b. Assume that X/ z vanishes when |z| — 00. Show that
y{l d =P )qu’ dw' + imx(q,w) =0 (7.154)

using the integration contour fig. 7.25.

Imz
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Figure 7.25

c¢. Show that the Kramers-Kronig relations follow from the result (b.),

1 " 1
Y(gw) = __P/X (q’w)dw'
I = P/X q}
x"(q,w) o w,

7.5 The density operator in reals space is given by,

plF) = X 8(F = 7) (7.155)

Derive the jellium quantities (7.34-7.35).
7.6 Derive (7.41) directly from the definition of x, (7.19).

7.7 The Lindhard function xp. It is not too hard to obtain the imaginary part.
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7.8

79
7.10
7.11
7.12

a. Show that the imaginary part of (7.40) can be written as,

e re d’p
Xo(qw) = 2”/0 @y [0(e5 — €rq + w) — (5 — €prg — w)] (7.156)

b. Show that this simplifies to,

. 1 [kr ! pq Pq
X w) = 5= [ wdp [ dv [6(eg+ v - w) = o(e, + By + 0| (7.157)

c. Integrate first over v and show that the remaining integral yields
(7.50,7.51).

How do the upper- and lower bounds of the particle-hole continuum of figure
7.3 behave precisely as function of ¢/kp and w/Er?

Derive (7.57) from (7.52) and (7.56).
Derive (7.60) from (7.57).
Derive (7.68-7.69) (use (7.52) for xg).

The Anderson impurity model is an important model in the context of heavy
fermion physics. It represents a tight-binding like, correlated impurity state ‘d’,
hybridizing via V} with band states (recall excercise 5.11),

H = Z &?kc,tgc;m + &4 Z Ndy + Z Vk(Cltadg + hC) + UndTndl (7158)
ko

ko o

When U = 0 (no interactions), this model is easily solved using Greens func-
tions, illustrating the idea of self-energy.

a. Use the Dyson equation to derive the impurity Greens function,
1

Gaa = (d|G(2)|d) = 7.159
= EEH) = —— (7.159)
with the self-energy (compare with Clogston-Wolff !!),
V'ICZ
S(z) =) (7.160)
& Z — EL

b. Assume V;, = V, while the density of states of the band electrons has the
‘box’ form (7.100-7.101). Sketch and discuss the impurity spectral func-
tion Aga(w) = ImG gq(w — in) for the following cases:

(i) 4 = 0 and V?p = W/10.

(ii) e =0 and VZp=W.

(iii) €4 = 3W/4 and V?p = W/10.
(iv) g = 3W/4 and VZp = W.
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