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Figure 4.4: 'Nursery school di,agram' of the electron ('full li,ne') emi,tti,ng or absorpi'ng

a phonon ('wi,ggly li,ne').

This Ìooks similar to the minimal coupling between fermions and gauge particles
which is one of the axioms of elementarv particie theory. According to field theory,
the interactions between the fermions are caused by virtual exchange of photons,

etcetera. Our 'wiggly lines' (which can also be other modes) also mediate interactions
between the electrons in the solids, with the specialty that they can cause attracti'ue

interactions, as will be discussed in Chapter VI.

Model interactions.

It is usually very hard to calculate the electron-phonon matrix-elements. As always,

to study qualitative effects one can get away with simple models. One extreme is
that perturbation theory works well in terms of the Bloch states: this is usually the
case in metals and semiconductors. In these cases, one is interested in electrons very
close to .Ðp behaving as neariy free electrons and the following model works very well

È"-pn: A,I >,p¡(bI-¡x+b¡x) Ø37)
q-À

where

Pí : Ð"i*u"'i" Ø'7s)
leo

measures a density wave in a jellium with a wavevector g7. Except for momentum
conservation, further momentum dependences of the eiectron-phonon coupling are

neglected.

3 þ¡çsycise 4.16

Non-perturbative effects are often associated with rather tightly bound electrons
(strong lattice potentials !) and these effects are usually adressed starting from the
tight-binding like Peierls- and Holstein models. In the Peieris model it is assumed

that the electrons couple to the phonons, because the latter modulate the bondlengths
and thereby the hopping matrix elements. We learned that the hopping elements be-

have like t - Ild,* (section 3.3). Expanding the length of the bond between the sites

rvt

k
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i and i+ d- as ,l;i : d¡Qì - u;¡ and.defining the equilibrium hopping as ,tq' - L I @{o))*',
the hopping part of the Hamiltonian can be written as,

Hr: tt!09)1r *au;¡)c\,c;*¡o Ø.79)
íio

and the displacements z;; are 'phononized' as usually. The Holstein model is even

simpler. It is assumed that the di,agonøl energies are modulated by the lattice vibra-

tions,

ii : Ir;(r +au;)tLío + lt;¡c\"c;n¡" (4.80)

ío íío

How can this happen? One should imagine a system with more than one atomic

orbital per unit cell, and lz > is some linear combination of orbitals on different

atoms within the unit cell, which ends up having an energy close to .Ep. If one

now modulates the structure wi,thi,n the unit cell, the level position of the hybrid
orbital will also change. For this to happen one needs optical phonons (out-of-phase

vibrations within the unit cell), and optical phonons usually disperse little. Hence,

one can take as well a (trinstel) phonon which is localized within the unit cel (b]).

Including this phonon,

H \-f/-t I
eñ;o I Mñí,Ø!,+ b) + aulll+¿ Ð k!,%*i,+ h.c.) (4.81)

'Ì,(f í,í,o

where M: ae hlMr.Notice that in the case of the Peierls model one needs more

realistic phonons for the model to make sense

==¿ þxçslcise 4.I7

Strong coupling: small polarons.

It is actually not at all true that the adiabatic approximation is a good one under

all circumstances. In fact, it is because of non-adiabatic 'corrections' that practical

electronic insulators exist. Perfect crystals can be band insulators. However, practical

insulators are usually littered with defects, and defects cause free charge carriers.

Why are these free carriers deemed to be immobile in practical insulators? It turns

out that such a carrier dresses itself up with a lattice distortion, and this bound state

of hole or electron and its lattice 'polarization cloud' is called 'polaron'. In order to
move) the carrier has to drag around pieces of the lattice and this makes the polaron

very heavy. The bandwidth associated with the polaron motion becomes small and

even weak static- or thermal disorder causes a complete localization. Even for the
case of a single carrier, the theory of polaron formation is not completely known.

However, the story becomes simple in some limits, and especially the limit where the

lattice is strongly deformed is quite informative. In this limit, the object is called the

'small polaron' and the Holstein model (4.S1) is taylored to clarify its physics.

If one expects that the interactions dominate, it is always a good idea to first consider

the classical limit, which is reached by neglecting the kinetic terms in the Hamiltonian.
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Therefore, rve put t:0 and the atom mass M -+ oo in (4.81). The classical energy

is then given by (the force constan| K - Mr'),

Ec¿ þtt * au;)n;* +"?)t
í

(4.82)

where n; is now either 0 (singly unoccupied), 1 (occupied) or 2 (doubly occupied)'

because the electronic problem is diagonal in the site basis. We consider one electron

which is localized at a particular site i. fne energy becomes,

Ec¿ :e (1 + au¡) * T"? * TÐ"i (4.83)

i+i

This energy is minimized to all u's and we find all displacements to be zero except

for u.9: -aelK. We substitute this back in (a.83) to find that the ground state

energy becomes Ect - tQ - #) Hence, the locali,zed electron has deformed the

latti,ce ("¡ # 0) and, thereby gilned, a'polaron bi,ndi,ng energy'Epot: e2a2fZK, for

the simple reason that the electron-phonon energy decreases linearly in u while the

restoring fbrce grows only quadratically.

This simple story is the essence of the polaron idea. The problems start if one tries

to treat this problem quantum-mechanically. As long as one can stick to the gaussian

order (somewhat questionable in this context, because the local displacements tend

to be large), the lattice kinetic energy does not pose much of a problem. In first
instance, we are interested in the low electron density limit, and the ciassical polaron

is characterized by a length scale: it is localized within the unit cell. It is expected that
the quantum polaron will also be characterized by a length scale: only a small part of

the lattice in the direct vicinity of the electron is altered, and the crystal as a whole

will stay intact. Hence, at least in the low density limit, polarons cannot destroy the

crystalline condensate. In addition, the phonons exhibit again their pleasant habit
of not alterning their energetics under quantization, and taking a finite atomic mass

yields the same answer as in the classical case.

+ Excercise 4.18

The problems start if the quantum mechanics of the electron is reinstored - finite f .

This will tend to spread out the electron. In the case that the hoppin g t > > Epot it is
clearly not a good idea to completely localize the electron, and if the electron is not

localizable, it is no longer possible to gain the polaron energy. Hence, eventually the

electron will loose its polarization cloud alltogether. One expects that in this limit the

electron-phonon effects can be taken into account perturbatively, to find smail shifts

and broadenings of the bare electron Bloch states. Although the strong coupling
(classicat) and weak coupling (nearly non-interacting) limits are easy, it turns out

that the regime in between is very difficult and despite a very large effort which
started already in the fifties this problem is still unsolved. To get some feeling, it
is interesting to approach this difficult intermediate coupling regime from the strong

coupling side: consider the electron hopping as the small parameter in the problem.

What follows is an example of the technique of 'strong coupling perturbation theory',
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which we will encounter more often in the course of these lectures. We start out
taking the problem (a.81) with f : 0 as a zeroth order, to subsequently consider the
hopping as a small perturbation. We consider (4.81), omitting the hopping term, and
we try to find a transformation es, with 

^91 - -,S, which brings this Hamiltonian in a
diagonal form in terms of new locaiized electron-like objects ðf and modified phonons

b,

Ho : 
\lr^r+Mñiþ\+fu) 

+uti,ur]

Ho : es Hoe-s

: f lf e'ej.e;o + ,'bl!,) (4.s4)
íL; )

Notice that this 'canonical transformation' lives entirely in operator 'space' - it is

actually not so easy to imagine how to execute this transformation directly in Hilbert
space. We need three useful properties of this transformation:

1 The transform of a product of operators is the same as the product of trans-
formed operators,

eS ABC ABC (4.85)

We need this for the next theorem:

2 Transforming an operator function which can be expanded as a power series

in terms of the operators yields the same function in terms of the transformed
operators,

This is useful, because the new Hamiitonian will be the old one with the new

operators.

3 The transformation can be written in terms of commutators as,

es ¡çA¡e-s : f(A)

A: es Ae-s : A I [^g,,4] * 
"1 

f

(4.86)

(4.s7)A,s
^9

+

3 þ¡cs¡cise 4.19

In the next chapter it will be shown how to determine ,S from the requirement that
it should diagonalize the Hamiltonian. We save us the effort here, and we conjecture
that

,s- - Dr["rr"#fl_ rr, (4.ss)
ío
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