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The space group classification of topological
band-insulators
Robert-Jan Slager1, Andrej Mesaros2, Vladimir Juričić1* and Jan Zaanen1

Topological band-insulators (TBIs) are bulk insulating materials, which in the presence of time-reversal symmetry feature
topologically protected metallic states on their surface or edge. They have recently been discovered in two- and three-
dimensional materials with a strong spin–orbit coupling. These unusual states of quantum matter may host Majorana fermions
and provide the condensed-matter realization of the exotic theta-vacuum. The existing classification of TBIs departs from
time-reversal symmetry, but the role of the crystal-lattice symmetries in the physics of these topological states has remained
elusive. Here we provide the classification of TBIs protected not only by time-reversal, but also by crystalline symmetries.
We find three broad classes of topological states: 0 states robust against general time-reversal invariant perturbations;
translationally active states protected from elastic scattering, but susceptible to topological crystalline disorder; valley
topological insulators sensitive to the effects of non-topological and crystalline disorder. These three classes give rise to 18
different two-dimensional, and, at least 70 three-dimensional TBIs, opening up a route for the systematic search for new types
of TBIs.

Topological phases of free fermionic matter are in general
characterized by an insulating gap in the bulk and protected
gapless modes on the boundary of the system1,2. Integer

quantum Hall states represent the first examples of topologi-
cally protected phases in the absence of any symmetries, with
the topological invariant directly related to the measured Hall
conductance3. Recently, it has become understood that even in
the presence of fundamental symmetries such as time–reversal,
topologically protected states of matter can, in principle, exist. In
particular, it has been shown that time-reversal invariant (TRI)
insulators in two dimensions4 (2D) and three dimensions (3D;
refs 5–7) are characterized by Z2 topological invariants, which
pertain to the existence of the gapless boundary modes robust
against time-reversal preserving perturbations, and may host
Majorana quasiparticles8, as well as provide the condensed-matter
realization of the theta-vacuum9. The theoretical prediction10,11

and experimental realization of the Z2-invariant topological
band insulators12–16 gave a crucial boost to the understanding of
these exotic phases of matter, which culminated in the general
classification of topological insulators and superconductors based
on time-reversal symmetry (TRS) and particle–hole symmetry
within the so-called ten-fold periodic table17–19.

The role of the crystal lattice in this classification is to provide a
unit cell in the momentum space, the Brillouin zone, topologically
equivalent to the d-dimensional torus, over which the electronic
Bloch wavefunctions are defined. The ten-fold classification follows
then assuming that all the unitary symmetries of the corresponding
Bloch Hamiltonian have been exhausted and therefore the
only remaining symmetries are, according to Wigner’s theorem,
antiunitary TRS and particle–hole symmetry. In 3D, however, by
considering a Z2 TBI as a stack of 2D ones, thus assuming a layered
3D lattice, three additional ‘weak’ invariants associated with the
discrete translation symmetry have been found5, which characterize
these states, and may be probed by lattice dislocations20. On the
other hand, it has been realized that topological states protected just
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by lattice symmetries, such as inversion, can exist in 3D (refs 21–26).
Furthermore, it has been recently found that a state protected both
by TRS and the lattice C4 rotational symmetry susceptible to the
lattice dislocations can be possible in 2D (ref. 27). However, in
general, the role of the space group symmetries in the physics of
topological states remained elusive.

We here provide the complete classification of TBIs protected
not only by TRS, but also by space group lattice symmetries. As a
starting point, we depart from the construction by Fu and Kane6,7,21
to compute theZ2 invariant in terms of thematrix of overlaps

wmn=〈um(−k)|ϑ |un(k)〉 (1)

where ϑ is the time–reversal operator and |un(k)〉 is the n th occu-
piedBlochwavefunction. The quantities of central significance are

δi=

√
det[w(0i)]
Pf[w(0i)]

(2)

defined at the points0i in the Brillouin zonewhere theHamiltonian
commutes with the time-reversal operator. Because the matrix w
is antisymmetric at the points 0i, the Pfaffian is defined at these
points and det[w(0i)]= (Pf[w(0i)])2. The topological Z2 invariant,
ν, is then given by (−1)ν =

∏
0i
δi, and its non-triviality implies

a topological obstruction for defining the wavefunctions through
the entire Brillouin zone with an even number of band inversions.
Notice that the evaluation of the topological invariant in terms of
the signs of the Pfaffian does not depend on the dimensionality but
only on the fact that the Hamiltonian possesses TRS which, owing
to the vanishing of the Chern number, guarantees the existence of
globally definedwavefunctions throughout the Brillouin zone.

First, notice that the set of the points0i at which theHamiltonian
commutes with the time-reversal operator is fixed by the space
group of the lattice, see Table 1. Second, we choose the overall phase
of the Bloch wavefunctions so that a unique phase, which we dub
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Table 1 | Table of the topological phases in 2D.

Bravais lattice (PG) WpG 0i δi Index (phase)

Square (D4) p4mm (0, M, X, Y) (-1, 1, 1,1) T-p4mm (0)
p4gm (1,-1, 1, 1) T-p4 (M)
p4 (1,1,-1,-1) p4 (X–Y-valley)

Rectangular (D2) p2mm (0, M, X, Y) (-1, 1, 1,1) T-p2mm (0)
p2mg (1,-1, 1, 1) T-p2mM (M)
p2gg (1,1,-1,1) T-p2mX (X)
pm, pg (1, 1, 1,-1) T-p2mY (Y)

Rhombic (D2) c2mm (0, M0, M−1, M1) (-1, 1, 1,1) T-c2mm (0)
cm (1,-1, 1, 1) T-c2m (M0)

(1,1,-1,-1) c2m (M-valley)
Oblique (C2) p2 (0, M0, M−1, M1) (-1, 1, 1,1) T-p2 (0)

p1 (1,-1, 1, 1) T-p2M0 (M0)
(1,1,-1,1) T-p2M−1 (M−1)
(1, 1, 1,-1) T-p2M1 (M1)

Hexagonal p6mm (0, M0, M−1, M1, K−, K+) (-1, 1, 1,1, 1, 1) T-p6mm (0)
(hexagonal—D6) p6 (1,-1,-1,-1, 1, 1) T-p6 (M)

(1, 1, 1,1,-1,-1) p6 (K-valley)
Hexagonal p3m1 (0, M0, M−1, M1) (-1, 1, 1,1) T-p3m1 (0)
(rhombohedral—D3) p31m, p3

For each of the lattice structures, the corresponding point-group (PG) symmetry and the relevant wallpaper group (WpG), that is, space group, are given. The corners of the square and rectangle are
denoted by M, whereas in the triangular Bravais structure they are labelled by K. Additionally, the centres of the edges are denoted by X and Y in both the square and rectangular case and by M in the
other lattices33 . The resulting phases are characterized by the distribution of the δi at the 0i points consistent with the WpG symmetry. Phases cluster in Bravais lattices, with the hexagonal structure
being the only exception. In this case theWpGs containing six-fold and three-fold rotational symmetries relate the high-symmetry points in different ways. As a result, the Hamiltonian does not commute
with the time-reversal operator at the K points in the latter case. The obtained phases are ultimately protected by TRS (whenever ν= 1), WpG symmetry, or both, and are accordingly indexed. The index
(last column) describes the part of the wallpaper group that leaves the subset 0i having δi=−1 invariant, while the additional label ‘T’ denotes TRS protection. In the column denoted ‘Phase’ we introduce
a convenient but imprecise shorthand notation.

the ‘0’ phase, has δ0 =−1 at the 0-point in the Brillouin zone and
δi = 1 at all the other high-symmetry points. A crucial observation
is that the distribution of signs of the Pfaffian, δi, at the points
0i, and not only their product, encodes the additional topological
structure. To show this, we first consider how thematrix of overlaps
transforms under a lattice symmetry operation represented by a
unitary operator U

wmn(k) = 〈um(−k)|ϑ |un(k)〉

= 〈um(−Uk) |UϑU †
|un(Uk)〉=wmn(Uk) (3)

As a consequence, when some of these high symmetry points are
related by point-group symmetry of the lattice, their signs of the
Pfaffian have to be equal. Therefore, it is sufficient to consider a
subset, 0a, of representative, inequivalent high symmetry points
that are also not related by any symmetry. This leads to the following
rule that allows for the determination of all the topological phases
given the space group and the corresponding high symmetry points,
0i: each phase is obtained by selecting a single representative
high-symmetry point 0a and setting δ0a =−1, which automatically
sets δ0b =−1 at all the high-symmetry points 0b related by point
group symmetry to 0a. Such phases are separated by a topological
quantum phase transition that involves bulk bandgap closing,
which changes the values of the δi.

Let us illustrate this simple classification principle by an
elementary example. We start with the 0 phase on a square
lattice, δ0 = −1, and δX = δY = δM = 1, where X, Y, and M are
the TRI momenta in the Brillouin zone. By applying our rule,
we immediately see that, besides the 0 phase, we obtain an ‘M’
phase with δM =−1, and δ0 = δX = δY = 1 (Table 1). This phase
is disconnected from the 0 phase through a topological quantum
phase transition with the bandgap closing at the X and the Y
points. This phase is protected by TRS and is also susceptible to

dislocations27, and represents an example of a ‘translationally active’
phase. Furthermore, because the X and the Y points are related
by a C4 rotation, there can exist a phase with δX = δY =−1, and
δ0 = δM = 1. The product of the δi at all TRI momenta then yields
the trivial Z2 invariant, ν = 0. However, C4 rotational symmetry
protects this phase, because it pins the band inversions at the X
and Y points. This phase represents a ‘valley’ (or ‘crystalline’23)
insulator—a phase which is trivial according to the ten-fold way
but protected by the lattice symmetries. Indeed, this new phase,
which we dub the ‘X–Y′ phase, is realized in an extension of the
M–B model for a quantum spin Hall insulator with next-nearest
neighbour hopping, as shown in Fig. 1, and responds nontrivially
to dislocations; see Supplementary Information for the technical
details. When C4 rotational symmetry is reduced to C2, the X
and Y points are no longer related by symmetry, and therefore
the symmetry constraints on δX and δY are no longer present. We
then expect the X–Y phase to be unstable, and to yield instead
nontrivial phases with δX =−1 or δY =−1, and δi = 1 at all other
TRI momenta. Our calculations, indeed, confirm this within the
M–B tight-bindingmodel, as shown in Supplemetary Section SA. In
general, an even number of TRImomenta related by symmetry yield
a valley phase, protected by crystal symmetrywhile having ν=0.

Let us now elaborate on the role of the space group of the
underlying lattice in this classification, as this symmetry group
defines the relation between the high-symmetry points. The
difference in phases found on rectangular and rhombic lattices
serves as a clear illustration. Both these lattices haveD2 point-group
symmetry, but different wallpaper groups (space groups in 2D).
The rhombic case has two inequivalent TRI momenta related by
point group symmetry and hence a valley phase, see Table 1 and
Supplementary Section SA. On the other hand, in the rectangular
case all D2 symmetry operations map any TRI momentum to its
equivalent, thus no valley phase is possible. From Table 1 it can
be seen that in 2D the phases, as related to space groups, cluster
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Figure 1 | Phase diagram of the extended M–B tight-binding model. As function of the model parametersM/B and z= B̃/B, where B (B̃) is the (next)
nearest-neighbour hopping parameter andM the difference in on-site energies, the different distributions of δi are obtained with the corresponding phases
listed in Table 1; consult Supplementary Section SA for details. En is energy of the edge mode labelled by n in units of the nearest-neighbor hopping
between s- and p-orbitals. Furthermore, the spectra of edge states per spin component are shown for the non-trivial phases, demonstrating that the valley
X–Y phase exhibits a pair of Kramers pairs of metallic edge states. The real space localization of these edge states is also presented, where the radii of the
circles represent the magnitude of the wave function and the colours indicate the phases as shown on the left.

in Bravais lattice classes, with one exception: the hexagonal lattice.
We will see that this clustering is less generic in 3D. In turn, the
primitive Bravais hexagonal (triangular) lattice (p6mm) is invariant
under C6 rotational symmetry around a lattice site, as opposed to
the non-primitive hexagonal lattice (p3m1) realized in graphene.
On the basis of our rule, we conclude that in the latter case only the0
phase is possible, which is in fact realized in the Kane–Melemodel28.
In contrast, on the former lattice (triangular), the points K+ and
K− are related by a C6 symmetry and thus each of these points
becomes TRI. The number of TRImomenta is increased, ultimately
yielding a possibility of additional translationally active and valley
phases, as shown in Table 1. These phases are realized within the
M–B tight-binding model (Supplementary Section SA), and their
robustness against disorder is shown in Supplementary Section SB.

The above rule allows us to completely classify and index the
topological phases: the last entry in Table 1. The set of Brillouin
zone high-symmetry points0i at which there is band inversion, that
is, δ0i =−1, is invariant under the operations of a subgroup of the
lattice space group. This symmetry subgroup therefore protects and
labels the topological phase. The other element in this indexing is
the protection by TRS (T), existing when Z2 invariant ν= 1, giving,
for instance,T -p4mm as the0 phase on the square lattice.When the
protecting symmetries coincide between phases, we explicitly label
0i (lower index), as, for example, forT -p2mX,T -p2mY andT -p2mM
phases on the rectangular lattice. This leads to the list of topo-
logical phases in 2D presented in Table 1, which gives 18 distinct
topological phases. As our general result, there are two additional
broad classes of topological states protected by TRS or crystalline

symmetries, besides the class of states robust against general TRS
perturbations (0-states): translationally active states protected both
by TRS and lattice symmetry, responding to dislocations, and valley
insulators which are trivial according to the ten-fold way but pro-
tected by space group symmetry and also susceptible to dislocations.

Our procedure can be applied in the same way in 3D, but it
becomes more involved given the 230 space groups and the large
number of high-symmetry points. We find at least 70 different
phases (R-J. Slager, A. Mesaros, V. Juričić, J. Zaanen, manuscript
in preparation). Here we will illustrate these matters for a number
of simple crystal structures (Table 2) that include those of TBIs of
present empirical relevance13–16. To illustrate matters, consider the
primitive cubic lattice (Table 2) with the familiar eight TRI points
(Fig. 2a). Crucially, the points (X,Y,Z) are related by a three-fold
rotation, as well as the points (X′, Y′, M). Consequently, we obtain
four TRS protected phases. We notice that this is quite different
from the indexing procedure introduced by Moore and Balents5.
For instance, ourT -pm3̄m (0) andT -p3(4)R (R) phases correspond
with their (1;0,0,0) and (1;1,1,1) indices, respectively. Their latter
two indices would also correspondwith theT -p3(4)M andT -p3(4)X
phases, respectively. The other possibilities in their classification
are either coincident with our four TBIs, or represent a 3D phase
not protected by crystal symmetries due to implicit dimensional
reduction (for example layered 3D lattice); Fig. 2a,b.

The power of the space group classification becomes further
manifest for non-cubic lattices. Consider the 3D hexagonal
lattice that consists of two hexagonal layers with the wallpaper
group p6mm stacked on top of each other. The TRI momenta
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Table 2 | Topological phases predicted in 3D for some specific point group symmetries.

Bravais lattice PGS SG 0i δi Index (phase)

Primitive cubic Oh pm3̄m (0, R, X, M) (−1, 1, 1, 1) T-pm3̄m (0)
pn3̄n (1,−1, 1, 1) T-p3(4)R (R)
pn3̄m (1, 1,−1, 1) T-p3(4)X (XYZ)
pm3̄n (1, 1, 1,−1) T-p3(4)M (MX′Y′)

Hexagonal C6v p6mm (0, M, A, L, K, H) (−1, 1, 1, 1, 1, 1) T-p6mm (0)
p6cc (1,−1, 1, 1, 1, 1) T-p6M (M)
p63cm (1, 1,−1, 1, 1, 1) T-p6A (A)
p63mc (1, 1, 1,−1, 1, 1) T-p6L (L)

(−1, 1, 1, 1, 1,−1) T-p60H (0H)
(1,−1, 1, 1, 1-1) T-p6HM (MH)
(1, 1,−1, 1,−1, 1) T-p6KA (KA)
(1, 1, 1,−1,−1, 1) T-p6LK (LK)
(1, 1, 1, 1,−1, 1) p6K (K-valley)
(1, 1, 1, 1, 1−1) p6H (H-valley)

Face centered cubic Oh fm3̄m (0, X, L, U, W) (−1, 1, 1, 1, 1) T-fm3̄m (0)
fm3̄c (1,−1, 1, 1, 1) T-f3(4) (X)
fd3̄m (1, 1,−1, 1, 1) f3(4) (L-valley)
fd3̄c (1, 1, 1,−1, 1) f43U (U-valley)

(1, 1, 1, 1,−1) f43W (W-valley)
Rhombohedral D3d r3̄m (0, L, F, Z, P, K, B) (−1, 1, 1, 1, 1, 1, 1) T-r3̄m (0)

r3̄c (1,−1, 1, 1, 1, 1, 1) T-r3̄L (L)
(1, 1,−1, 1, 1, 1, 1) T-r3̄F (F)
(1, 1, 1,−1, 1, 1, 1) T-r3̄Z (Z)
(1, 1, 1, 1,−1, 1, 1) r3̄P (P-valley)
(1, 1, 1, 1, 1,−1, 1) r3̄K (K-valley)
(1, 1, 1, 1, 1, 1,−1) r3̄B (B-valley)

Bravais lattices with same point-group symmetries have different space groups (SG). We point out that, in contrast to the 2D case, the phases do not cluster in Bravais lattice structures. For example, the
four-fold rotational symmetry crucial for the f43U and f43W phases is not contained in every space group associated with the face-centred cubic lattice. As the δi attain the same value at the points 0i
related by lattice symmetry or a reciprocal lattice vector, only one representative is given from each set of such points. We note that the rhombohedral T-r3̄L phase is observed in Bi1−xSbx (refs 13,14),
whereas the T-r3̄m phase is found in Bi2Se3 (ref. 15) and Bi2Te3 (ref. 16). Moreover, the fm3̄m–f3(4) phase has recently been observed in SnTe (ref. 30), as well as in the Sn-doped compounds PbTe
(ref. 31) and PbSe (ref. 32).
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Figure 2 | Illustration of the role of lattice symmetries in the classification of topological states. a, The eight TRI momenta in the Brillouin zone of the
primitive cubic lattice. When only TRS is considered the sign of any quadruple of δi values within a plane connecting them can be changed, leaving their
product the same. As a result one obtains, in addition to the ’strong’ invariant, three weak invariants corresponding to the orthogonal planes. b, The
constraints on the δi arising from the lattice symmetries. The high-symmetry axes1,3 and6 represent axes of four-, three- and two-fold rotations,
respectively; these transform the TRI points in the coloured planes into each other, and thus constrain the corresponding δi to be equal. c, The Brillouin zone
of the face-centred cubic lattice with high-symmetry points and a mirror plane that projects onto the 0̄–X̄–0̄ line in the (001) plane. TheW-valley phase
features Dirac cones along 0̄–M̄–0̄ and 0̄–S̄–0̄ lines, but not along 0̄–X̄–0̄ lines.

comprise two copies of the ones on the 2D hexagonal lattice,
separated by a perpendicular translation. Accordingly, the phases
can easily be obtained by considering the kz = 0 plane (Table 1),
which contains the 0, M and K points, and those of the
other translated plane associated with the points A, L and H,
respectively (Table 2). Consequently, there are eight TRS protected
phases resulting from the combinations of a TRS protected

phase in one plane and a trivial or a valley configuration in
the other plane. Additionally, there are two valley phases that
are configurations with one plane featuring a valley phase and
the other a trivial configuration. Notice that a potential double
valley phase with a valley phase in each of the planes is not
protected by 3D crystal symmetry and is therefore trivial. We
again point out that the truly 3D valley phase is determined
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by a 3D point group, namely, the one whose action cannot be
reduced to the 2D case.

Most experimentally observed TBIs are of the 0 kind, such
as Bi2Se3 (ref. 15) and Bi2Te3 (ref. 16), except for Bi1−xSbx,
where the 3D pursuit started13,14, which is r 3̄m− T − r 3̄L. The
theoretically predicted rocksalt actinides29 are actually of the
translationally active class fm3̄m− T − f 3(4). SnTe, as well as
Sn-doped compounds PbTe and PbSe, have the same space group,
but the phase recently observed in these compounds has no TRS
protection30–32 and is a valley phase23. Let us inspect this phase in
more detail. This phase turns out to be indexed as fm3̄m− f 3(4)
(Table 2). The system has mirror planes in the momentum space
formed by the 0 and any two of the L points, which thereby
relate the remaining two L points by symmetry. As a result, a
mirror-symmetric crystal cut along the 0̄–X̄–0̄ line in the (001)
surface features a pair of Dirac cones (a double Dirac cone), which
is therefore also protected by the same symmetry24. Notice that we
also predict valley phases at the W and the U points in the Brillouin
zone protected by both the four-fold and the three-fold rotational
symmetries, labelled by fm3̄m–f 43W and fm3̄m–f 43U, respectively.
The W-phase originates from six inequivalent symmetry-related
W-points in the Brillouin zone where a band inversion gives rise to
a valley phase. Furthermore, in the same phase, the (001) surface
features Dirac cones for the cut along the 0̄–M̄–0̄ and 0̄–S̄–0̄
lines, but not along the 0̄–X̄–0̄ direction, as is the case in the
fm3̄m− f 3(4) phase; see Fig. 2. Therefore, the detection of the
Dirac cones in the 0̄–M̄–0̄ and 0̄–S̄–0̄ directions in angle-resolved
photoemission spectroscopy (ARPES) experiments would be a clear
signature of this valley phase.

Our complete classification scheme, based on the full 2D and
3D space groups, has as its most important consequence that it
demonstrates the potential existence of at least seventy distinct
topological phases of insulatingmatter.We therefore anticipate that
our results will be a valuable guide in the future exploration of
the landscape of topological quantummatter. In particular, besides
being useful for prediction and characterization of TBIs, the role
of the crystal lattice we uncovered might also have consequences
for the topological states in the presence of interactions and
superconducting order. Our findings should also help further
understand the role of lattice defects and disorder in the physics of
the topological states of matter.

Received 27 July 2012; accepted 19 November 2012;
published online 16 December 2012
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