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We study the coexisting smectic modulations and intra–unit-cell nematicity in the pseudogap states of
underdoped Bi2Sr2CaCu2O8+d. By visualizing their spatial components separately, we identified 2p
topological defects throughout the phase-fluctuating smectic states. Imaging the locations of large
numbers of these topological defects simultaneously with the fluctuations in the intra–unit-cell nematicity
revealed strong empirical evidence for a coupling between them. From these observations, we propose
a Ginzburg-Landau functional describing this coupling and demonstrate how it can explain the
coexistence of the smectic and intra–unit-cell broken symmetries and also correctly predict their
interplay at the atomic scale. This theoretical perspective can lead to unraveling the complexities of
the phase diagram of cuprate high-critical-temperature superconductors.

Electronic liquid crystals are proposed to
occur when the electronic structure of a
material breaks the spatial symmetries of

its crystal lattice (1–8). In theory, nematic elec-
tronic liquid crystals would preserve the lattice
translational symmetry but break the discrete
rotational symmetry, whereas smectic (striped)
electronic liquid crystals would break both.

These concepts have played an important role
in theoretical considerations of the pseudogap
phase of underdoped cuprates (1–8).

At hole densities ( p) below ~16%, cuprates
exhibit d-wave superconductivity at lowest tem-
peratures and the pseudogap phase above the
superconductor’s critical temperature,Tc. Although
it is unknown which broken symmetries (if any)

cause the pseudogap phase, both nematic and
smectic broken symmetry states have been re-
ported in different underdoped cuprate com-
pounds (9–18). Spin and charge smectic broken
symmetry (stripes) exists in La2–x–yNdySrxCuO4

and in La2-xBaxCuO4 when x ~ 0.125 (6, 9–12).
On the other hand, broken 90°-rotational sym-
metry is reported in underdoped YBa2Cu3O6+d

(13,15–17), underdopedBi2Sr2CaCu2O8+d (14, 18),
and underdoped HgBa2CuO4+x (19). These states
are highly distinct: The former breaks both trans-
lational symmetry with a finite wave vector →q ¼ →

S,
where the magnitude of

→
S is the wave number for

the modulation, and 90°-rotational symmetry
(9–12), whereas the latter is associated with intra–
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Fig. 1. (A) Schematic image of an edge dislocation
in a crystalline solid (solid circles indicate atomic
locations) and in the two-dimensional smectic
phase of a liquid crystal (solid white lines indicate
modulation period). In both cases, it is the spatial
phase of periodic modulations that winds around the
dislocation core by precisely 2p. (Inset) Schematic
image of a superfluid or superconducting vortex over-
lapped with its phase field, which winds by exactly
2p. (B) Sub–unit-cell resolution image of the elec-
tronic structure at the pseudogap energy Z(→r,e = 1).
(Inset) Its Fourier transform of Z̃(→q,e = 1), which
demonstrates that the →q-space electronic structure
contains two components, nematic [red circles at the
Bragg peaks, see (18)] and smectic (blue circles).
The smectic peaks are centered at |

→
Sx | = |

→
Sy| =

0:72(2p /a0). White box is field of view (FOV) of
Fig. 2, A and B. Tc of the sample is 50 K. (C) Spatial
variation of the electronic nematicity On(

→r,e = 1)
in the same FOV as in (B). (Inset) The Bragg peak
intensities are compared along x and y directions.
(D) Spatial variation of the smectic electronic struc-
ture modulations OS(

→r,e = 1) [see (18)].
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unit-cell breaking of 90°-rotational symmetry
(15, 18–20). A key challenge is therefore to un-
derstand the interactions between these phenom-
ena (9–27).

We consider the coexisting smecticmodulations
and intra–unit-cell nematicity in the pseudogap-
energy electronic structure of the underdoped
high-Tc superconductor Bi2Sr2CaCu2O8+d (18, 20)
by using approaches derived from studies of
classical liquid crystals. In those systems, fluctu-
ating nematic and disordered smectic states coex-
ist, and their dominant coupling can be captured
successfully by using Ginzburg-Landau theory
(22, 24, 25). The influence of 2p phase-winding
topological defects of the smectic was key to those
studies. But the extension of such classical ideas to
electronic systems presents some new challenges.
First, the intra–unit-cell C4-breaking observed at
nanoscale in the cuprate pseudogap states (18, 20)
is distinct from nematicity in a classical liquid crys-
tal, because it has Ising symmetry resulting from
the existence of the crystal lattice.Moreover,wheth-
er 2p topological defects even exist within the
cuprate pseudogap smectic states was unknown.

Topological defects are the fundamental emer-
gent excitations when a new ordered phase is
formed by breaking a continuous symmetry
(21, 22). They are singular points or lines in the
otherwise spatially continuous configuration of
the order-parameter field. For example, when
the order-parameter field is a complex function
y(→r) = y0e

iϕ(→r) of the position →r , the phase

ϕ(→r) winds by integer multiples of T2p around
every topological defect. Classic examples include
the quantized vortices in bosonic and fermionic
superfluids (23) and the quantized fluxoids of
superconductors (22, 23) (Fig. 1A inset). Systems
with broken translational symmetry, such as
crystals or smectic liquid crystals, also exhibit 2p
phase-winding topological defects. In a crystal,
when a single line of atoms (Fig. 1A, black dots)
terminates at an edge dislocation, nearby atoms
are distorted away from their ideal lattice lo-
cations, resulting in a spatially varying phase of
periodic modulations that winds around the
dislocation core by precisely 2p (22). In smectic
liquid crystals, the equivalent topological de-
fects are referred to as (smectic) dislocations.
Again, each dislocation core is surrounded by a
region where the phase of the periodic (smec-
tic) modulations (white lines in Fig. 1A) winds
by exactly 2p. These topological defects are
uniquely important in classical liquid crystals be-
cause their properties reveal the dominant cou-
pling between the nematic field and the smectic
field. In fact, quasi–long-range smectic-A order
in two dimensions is destroyed by this coupling,
which lowers the energy cost of smectic dislo-
cations, allowing their spontaneous appearance
at any temperature (22, 24, 25). We apply an anal-
ogous theoretical approach to coexisting broken
electronic symmetries in underdoped cuprates.

Spectroscopic imaging scanning tunneling mi-
croscopy (SI-STM) allows visualization of electron-

ic broken symmetries in cuprates (18, 20, 26, 27) by
using atomically resolved spatial imagesof Z(→r,E) =
[dI /dV (→r, E ≡ þeV )] / [dI /dV (→r, E ≡ −eV )],
where dI /dV (→r,V ) is the spatially resolved dif-
ferential tunneling conductance [supporting on-
line material (SOM) a]. In underdoped cuprates,
energy-independent symmetry breaking is vivid
in the nondispersive Z(→r,E) modulations at the
pseudogap energy scale E ~ D1 (18, 20, 26–28).
The coexistence of intra–unit-cell nematicity and
smectic modulations (18, 20) appears to be a ro-
bust property of these electronic structure images
of the cuprate pseudogap states, being virtually iden-
tical in Bi2Sr2CaCu2O8+d and Ca2–xNaxCuO2Cl2
(20) and unchanged from below to above Tc (27).

To separate the components of the E ~ D1
electronic structure, each Z(→r,E ) image is first
distortion-corrected to render the atomic sites
in a perfectly periodic array (18). Then, to deal
with the spatial disorder in D1(

→r ), E is rescaled
locally to e(→r ) ¼ E/D1(

→r ), yielding Z(→r,e); all
the broken symmetry phenomena of the pseudo-
gap states then occur together in a single image
Z(→r,e = 1) (Fig. 1B and SOM a). Then, when
Z̃(→q,e = 1), the Fourier transform of Z(→r,e = 1),
is calculated (Fig. 1B inset), it exhibits four sa-
lient features: the Bragg peaks at→q =

→
Qx and

→
Qy

(red circles) and the smectic modulation peaks
→q ¼ →

Sx and
→
Sy (blue circles). The phase-resolved

Bragg-peak Fourier components can then be
used to detect intra–unit-cell symmetry breaking
within each Z(→r,e = 1) image (18).

Fig. 2. (A) Smectic modulations along x direction
are visualized by Fourier filtering out all the mod-
ulations of Z(→r,e = 1) except those surrounding

→
Sx,

in the FOV indicated by the broken boxes in Fig. 1B
and in (C). (B) Smectic modulations along y direc-
tion are visualized by Fourier filtering out all the
modulations of Z(→r,e = 1) except those surround-
ing

→
Sy, in the FOV indicated by the broken boxes in

Fig. 1B and in (D). (C and D) Phase field ϕ1(
→r ) and

ϕ2(
→r ) for smectic modulations along x and y direc-

tion, respectively, exhibiting the topological defects
at the points around which the phase winds from 0
to 2p (in the FOV same as in Fig. 1B). Depending on
the sign of phase winding, the topological defects
are marked by either white or black dots. The broken
red circle is the measure of the spatial resolution
determined by the cut-off length (3s) in extracting
the smectic field from Z̃(→q,e = 1). We did not mark
defect-antidefect pairs when they are tightly bound
by separation distances shorter than the cut-off
length scale.
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We focus on intra–unit-cell “nematicity” de-
fined by 〈On(e)〉 ≡ [Re Z̃(

→
Qy, e) − Re Z̃(

→
Qx, e)]/

Z(e), where Z(e) is the spatial average ofZ(→r, e),
as a measure of the observed inequivalence be-
tween x- and y-axis electronic structure within
the CuO2 unit cell (18, 20, 27). A finite 〈On(e)〉
implies that the C4v symmetry of an ideal CuO2

plane has been reduced at most to C2v sym-
metry. There are eight symmetry reduction pos-
sibilities for a system with full C4v symmetry;
finite 〈On(e)〉 further restricts this to four. Infor-
mation regarding further symmetry lowering (such
as inversion symmetry breaking) can determine
the actual symmetry of pseudogap states, but
those issues are beyond the scope of this paper.
A coarse-grained image On(

→r, e = 1) represent-
ing the local inequivalence of x- and y-axis elec-
tronic structure (18) is presented in Fig. 1C. The
panel shows how, althoughOn(

→r,e = 1) is strong-
ly fluctuating at the nanoscale in very underdoped
Bi2Sr2CaCu2O8+d, it has a finite average value
within such a field of view.

The quite distinct properties of the smectic
electronic structure modulations at E ~ D1 can be
examined independently of the intra–unit-cell
symmetry breaking by focusing only on the in-
commensurate modulation peaks

→
Sx and

→
Sy. A

coarse-grained image of the local degree of smec-
tic symmetry breaking Os(

→r, e = 1) (Fig. 1D and
SOM b) reveals the very short correlation length
of the strongly disordered smectic (18, 20, 26–28).
The amplitude and phase of two unidirectional
modulation components (along x, y) within the
box in Fig. 1B can be further extracted, as shown
in Fig. 2, A and B (29). To do so, we denote the
local contribution to the

→
Sx modulations at posi-

tion→r by a complex fieldy1(
→r ). This contributes

to the Z(→r, e = 1) data as

y1(
→r )ei

→
Sx •→r þ y*1 (

→r)e�i
→
Sx •→r

≡ 2jy1(
→r )jCos[→Sx • →r þϕ1(

→r )] ð1Þ
thus allowing the local phase ϕ1(

→r) of
→
Sx modu-

lations to be mapped similarly for the local phase
ϕ2(

→r ) of the
→
Sy modulations. In Fig. 2, C and D,

we show images of ϕ1(
→r ) and ϕ2(

→r ) derived
from Z(→r, e = 1). They reveal that the smectic
phasesϕ1(

→r ) andϕ2(
→r ) take on all values be-

tween 0 and T2p in a highly complex spatial pat-
tern. Evenmore important is the detection of a large
number of topological defects with T2p phase
winding. These are indicated by black (þ2p) and
white (−2p) circles in Fig. 2, C and D, and occur in
about equal numbers (as one might anticipate from
the likely macroscopic energy cost of an uncom-
pensated dislocation). A typical example of an in-
dividual topological defect (solid box in Fig. 2, A
andC) is shown in Fig. 3, A andB. The dislocation
core (Fig. 3B) and its associated 2p phase winding
are clearly seen (Fig. 3A). Moreover the amplitude
of y1(

→r ) or y2(
→r ) always approaches zero near

each topological defect, as expected. These data
are all in close agreement with the theoretical expec-
tations for quantum smectic dislocations (Fig. 1A).

Imaging the locations of these topological
defects (Fig. 2, C and D) simultaneously with
the intra–unit-cell nematicity (Fig. 1C) reveals
another key result. Figure 4A shows the lo-
cations of all topological defects in Fig. 2, C
and D, plotted as black dots on the simultaneous-
ly acquired image dOn(

→r) ≡ On(
→r) − 〈On〉 rep-

resenting the fluctuations of the intra–unit-cell
nematicity. By eye, nearly all the topological
defects appear located in (white) regions of
vanishing dOn(

→r ) ¼ 0. This can be quantified by
plotting the distribution of distances of topolog-
ical defects from the nearest zero of dOn(

→r ),
thereby showing that they are far smaller than ex-
pected if the topological defects were uncorre-
lated with dOn(

→r) (Fig. 4A inset and SOM c).
These data provide empirical evidence for a cou-
pling between the smectic topological defects and
the fluctuations of the intra–unit-cell nematicity
at E ~ D1.

To establish a Ginzburg-Landau (GL) model
representing such a coupling, one needs to de-
termine first whether the dOn(

→r ) fluctuations are
coupled to the phase or the amplitude of the

smectic modulations (30–33). Whether the mod-
ulations are commensurate (periodic with wave-
length rational multiple of a0) or incommensurate
is key. For incommensuratemodulations, a smooth
deformation of the phase (Fig. 3A) costs a vanish-
ingly small energy, whereas phase fluctuations
always cost a finite energy for commensurate
modulations. On the other hand, fluctuations of
the modulation amplitude (Fig. 3D) cost a finite
energy in both cases (34). There are multiple
reasons to conclude that we are dealing with in-
commensurate modulations. First, the locations
of

→
Sx and

→
Sy are not necessarily at a commen-

surate point in
→
q space (Fig. 1B, inset), and they

change continuously with hole density (26)
(Fig. 3C). More profoundly, a complex histo-
gram of y1(

→r ) or y2(
→r ) (Fig. 3D) shows little

predominant phase preference overall. At a few
high-amplitude locations (Fig. 3D), there is a
particular phase preference consistent with short
range commensurate “nanostripes” (20). Howev-
er the continuous winding around each defect
(Fig. 2) is in clear contrast to discrete jumps when
only specific values of phase are allowed (35).
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Fig. 3. (A) Phase field around the single topological defect in the FOV indicated by the solid box in Fig. 2,
A and C. (B) Smectic modulation around the single topological defect in the same FOV, showing that the
dislocation core is indeed at the center of the topological defect and that the modulation amplitude tends
to zero there. This is true for all the 2p topological defects identified in Fig. 2. (C) Doping dependence of
the wavelength for the smectic modulations along wave vectors

→
Sx and

→
Sy (26). (D) Two-dimensional

histogram of real and imaginary components of the measured smectic field y1(
→r ).
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Hence, these observations support the incom-
mensurate picture in which the smectic broken
symmetry exhibits free winding of the phase.
Thus, our third advance is the demonstration that
the simultaneously broken electronic symmetries
in the E ~ D1 states consist of intra–unit-cell
nematicity coexisting with disordered and phase
fluctuating smectic modulations.

Spatial patterns of coexisting smectic modu-
lations and intra–unit-cell nematicity, as well as
their coupling, may be described most naturally
by a correspondingGL functional. For the locally
fluctuating

→
Sx modulations represented byy1ð→rÞ,

the GL functional is

FGL[y1(
→r )] = ∫d2r[axj∇xy1(

→r )j2 þ
ayj∇yy1(

→r )j2 þ mjy1(
→r )j2] ð2Þ

Here, ax ≠ ay and m are phenomenological GL
parameters [assuming x and y directions are in-
equivalent (18)]. FGL is a generalization of the
GL free energy of a density modulation in one
spatial dimension (22). It is similar to the GL free
energy of a superfluid. As it is for superfluids,
fluctuations in phaseϕ1(

→r ) enterFGL only through
the spatial derivative terms because

j∇xy1(
→r )j2 = [∇xjy1(

→r )j]2 þ
jy1(

→r )j2[∇xϕ1(
→r )]2 ð3Þ

The absence of long-range smectic order (Figs.
1D and 2) despite the finite modulation ampli-
tudes (except within dislocation cores) implies
phase fluctuations play the predominant role in
smectic disordering. Further, the finite density
of topological defects (Fig. 2) also indicates that
Eq. 2 cannot provide a complete description of
the phenomena. This is because an isolated topo-
logical defect will cost an energy that grows as a
logarithm of the system size and hence is unlikely
to occur. Yet we observe large numbers of iso-
lated T2p topological defects (Fig. 2). Therefore,
coupling to other degrees of freedommust reduce
the energy of the smectic dislocations. For the
case of a classical nematic liquid crystal on the
verge of freezing into a smectic-A, de Gennes
discovered (24) a GL free energy describing how
the nematic fluctuations lower the energy cost
of smectic dislocations to a finite amount, thus
allowing for the isolated topological defects to
appear and resulting in destruction of quasi–
long-range smectic order in two dimensions (24).
With such a historical guide, we consider the in-
terplay between the intra–unit-cell nematicity and
incommensurate smectic modulations by in-
cluding dOnð→rÞ fluctuations in the above GL
functional.

When 〈On〉 ≠ 0 (Fig. 1C) (18), the local fluc-
tuation dOn(

→r ) ≡ On(
→r ) − 〈On〉 (Fig. 4A) is the

natural small quantity to enter the GL func-

tional [when 〈On〉 ¼ 0 possibly at higher dop-
ings, the expansion should be in terms ofOn(

→r )
with the appropriate symmetry]. Coupling to
the smectic fields can then occur either through
phase or amplitude fluctuations of the smectic.
Here, we focus on the former, which means that
dOn(

→r ) couples to local shifts of the wave vec-
tors

→
Sx and

→
Sy. Replacing the gradient in the x

direction by a covariant-derivative-like cou-
pling gives

∇xy1(
→r ) → [∇x þ icxd On(

→r )]y1(
→r ) ð4Þ

and similarly for the gradient in the y direction, to
yield a GL term coupling the nematic to smectic
states. The vector→c = (cx, cy) represents by how
much the wave vector,

→
Sx, is shifted for a given

fluctuationdOn(
→r). Hence, we propose a GL func-

tional (for modulations along
→
Sx) based on sym-

metry principles and dOn(
→r) and y1(

→r ) being
small:

FGL[dOn,y1] = Fn[dOn] þ

∫d2r[axj(∇x þ icxdOn)y1j2 þ
ayj(∇y þ icydOn)y1j2 þ mjy1j2 þ…] ð5Þ

where … refers to terms we can neglect for the
present purpose (SOM d). If we were to replace

Fig. 4. (A) Fluctuations
of electronic nematicity
dOn(

→r,e = 1) obtainedby
subtracting the spatial av-
erage〈On(

→r,e = 1)〉 from
On(

→r,e = 1) (Fig. 1C). The
simultaneously measured
locations of all 2p topolog-
ical defects are indicated
as black dots. They are pri-
marily foundnear the lines
where dOn(

→r,e = 1) = 0.
(Inset) The distribution of
distances between each
topological defect and its
nearestdOn(

→r,e = 1) =0
contour. This is compared
to the expected aver-
age distance if there is
no correlation between
dOn(

→r,e = 1) and the to-
pological defect locations.
There is a very strong tend-
ency for the distance to the
nearest dOn(

→r,e = 1) =
0 contour to be small. The
boxes show regions that
are blown up in (E) and (F)
and compared to simula-
tions in (C) and (D). (B)
Theoretical dOn(

→r,e = 1)
predicted by the GL model in Eq. 5 (top) at the site of a single smectic topological
defect (bottom). The vector

→
l lies along the zero-fluctuation line ofOn(

→r,e = 1). (C
and D) dOn(

→r,e = 1) obtained by numerical simulation using Eq. 5 and the ex-
perimentally obtained topological defect configurations (black dots). Red broken

circle is themeasure of the spatial resolutiondeterminedby the cut-off length (3s) in
extracting the smectic field. (See SOM f for the details of the numerical simulation).
(E and F) MeasureddOn(

→r,e = 1) in the fields of view of (C) and (D). The achieved
cross correlation is well above the lower bound for statistical significance (SOM f).
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→cdOn(
→r ) by

2e

ℏ

→
A(→r ) where

→
A(→r ) is the electro-

magnetic vector potential, Eq. 5 becomes the GL
free energy of a superconductor; its minimization
in the long-distance limit yields

→
A(→r ) =

ℏ

2e

→
∇ϕ(→r )

and thus quantization of its associated magnet-
ic flux (22, 23). Analogously, minimization of
Eq. 5 impliesdOn(

→r ) =
→
l ⋅

→
∇ϕ surrounding each

topological defect (SOM e). Here, the vector
→
l is

proportional to (ax; ay) and lies along the line
where dOn(

→r ) = 0. The resulting key prediction is
that dOn(

→r ) will vanish along the line in the di-
rection of

→
l that passes through the core of the

topological defect, with On(
→r ) becoming greater

on one side and less on the other (Fig. 4B). Addi-
tional coupling to the smectic amplitude can shift
the location of the topological defect away from
the line of dOn(

→r ) = 0 (SOM e).
To test whether this GL model correctly cap-

tures the observed (Fig. 4, A and B) dOn − ys
coupling in Bi2Sr2CaCu2O8+d, we extend Eq. 5
to include both

→
Sx and

→
Sy smectic modulations.

We then simulate the profile of dOn(
→r ), treating

the phase and amplitude of smectic fields y1(
→r )

and y2(
→r ) (Fig. 2) as mean-field input that will

determine dOn(
→r ) according to Eq. 5 (SOM e).

Figure 4, C and D, shows the overlay of topolog-
ical defect locations within the small boxes in Fig.
4AondOn(

→r ) as simulated byusingEq. 5 (SOMe).
This demonstrates directly how the GL function-
al associates fluctuations indOn(

→r ) with the smec-
tic topological defect locations in the fashion of
Fig. 4B. The close similarity between the mea-
sured dOn(

→r) in Fig. 4, E and F, and the simu-
lation in Fig. 4, C and D, with cross-correlation
coefficients of 56% and 62% demonstrates how
the minimal GL functional of Eq. 5 captures the
interplay between the measured dOn(

→r ) fluctua-
tions (Fig. 4A) and disordered smectic modula-
tions (Fig. 2). And, as expected with extrinsic
disorder (36), the GL parameters vary somewhat
from location to location (SOM f). Indeed, a
simultaneous “gapmap” (SOM g) shows vividly
how much additional (probably dopant-atom-
related) disorder coexists with the phenomena
analyzed here.

Our results can lead to advances in understanding
of coexisting and competing electronic phenomena
in underdoped cuprates (9–20). By identifying 2p
topological defects within the phase-fluctuating
smectic states and that they are associated with
the spatial fluctuations of the robust intra–unit-cell
nematicity (18, 20), we demonstrated empirically
a coupling between these two locally broken
electronic symmetries of the cuprate pseudogap
states. This allowed identification of a GL func-
tional that explains how these phenomena coexist
and predicts their interplay at the atomic scale.
For example, the GL model explains why it is
possible for the intra–unit-cell nematicity to have
finite average 〈On(

→r)〉 ≠ 0 (Fig. 1C) even though
the smectic modulations are disordered (Figs. 2
and 3) (18). This is because 2p topological defects
induce fluctuations of dOn(

→r ) with respect to
〈On(

→r )〉, but the dislocation cores sit close to lo-
cations where On(

→r ) = 〈On(
→r )〉 and thus do not

disrupt this state directly (SOM e). Perhaps most
importantly, if the tendency for intra–unit-cell
nematicity to coexist with a disordered electronic
smectic demonstrated here is ubiquitous to un-
derdoped cuprates, which broken symmetry
manifests at the macroscopic scale (9–20) de-
pends on the coefficients in the GL functional
and on other material-specific aspects, such as
crystal symmetry. Therefore, the GL model intro-
duced here provides a good starting point to
address these issues and, eventually, the interplay
between the different broken electronic sym-
metries and the superconductivity.
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Atmospheric Carbon Injection Linked
to End-Triassic Mass Extinction
Micha Ruhl,1,2* Nina R. Bonis,1,3 Gert-Jan Reichart,4

Jaap S. Sinninghe Damsté,4,5 Wolfram M. Kürschner1,6

The end-Triassic mass extinction (~201.4 million years ago), marked by terrestrial ecosystem turnover
and up to ~50% loss in marine biodiversity, has been attributed to intensified volcanic activity
during the break-up of Pangaea. Here, we present compound-specific carbon-isotope data of long-chain
n-alkanes derived from waxes of land plants, showing a ~8.5 per mil negative excursion, coincident
with the extinction interval. These data indicate strong carbon-13 depletion of the end-Triassic
atmosphere, within only 10,000 to 20,000 years. The magnitude and rate of this carbon-cycle disruption
can be explained by the injection of at least ~12 × 103 gigatons of isotopically depleted carbon
as methane into the atmosphere. Concurrent vegetation changes reflect strong warming and an
enhanced hydrological cycle. Hence, end-Triassic events are robustly linked to methane-derived massive
carbon release and associated climate change.

The end-Triassic mass extinction (ETME)
[~201.4 million years ago (1)], one of the
five major extinction events of the Phan-

erozoic (2), is marked by up to 50% marine bio-
diversity loss and major terrestrial ecosystem
changes (2–5). This event closely matches a

22 JULY 2011 VOL 333 SCIENCE www.sciencemag.org430
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